

SOFTWARE PROTECTION AGAINST

REVERSE ENGINEERING TOOLS

THESIS

Joshua A. Benson, Captain, USAF

AFIT/GIA/ENG/07-01

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

i

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

ii

AFIT/GIA/ENG/07-01

SOFTWARE PROTECTION AGAINST REVERSE ENGINEERING TOOLS

THESIS

Presented to the Faculty

Department of Systems and Engineering Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Joshua A. Benson, BS

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

iii

AFIT/GIA/ENG/07-01

SOFTWARE PROTECTION AGAINST REVERSE ENGINEERING TOOLS

Joshua A. Benson, BS

Captain, USAF

 Approved:

 /signed/

 Dr. Rusty O. Baldwin (Chairman) date

 /signed/

 Dr. Richard A. Raines (Member) date

 /signed/

 Dr. Paul D. Williams (Member) date

iv

AFIT/GIA/ENG/07-01

Abstract

Advances in technology have led to the use of simple to use automated debugging

tools which can be extremely helpful in troubleshooting problems in code. However, a

malicious attacker can use these same tools. Securely designing software and keeping it

secure has become extremely difficult. These same easy to use debuggers can be used to

bypass security built into software. While the detection of an altered executable file is

possible, it is not as easy to prevent alteration in the first place. One way to prevent

alteration is through code obfuscation or hiding the true function of software so as to

make alteration difficult. This research executes blocks of code in parallel from within a

hidden function to obscure functionality.

 This method is tested on six programs; a DOS version of the UNIX grep utility

and five computational functions: Fast Fourier Transfer, Successive Over-Relaxation,

Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization. It tests the

impact of using four, eight, and twelve parallel threads of execution to obscure

functionality.

 The concept is effective, but is limited due to the cost associated with using

threads. The computational functions make millions of calls to the hidden function. The

average cost per thread for these five functions turns out to be 7.04906 x 10
-6
 seconds.

The grep function does not make millions of calls and is therefore more feasible. Care

must be taken to ensure the compiler does not remove parallel threads if optimization is

used.

v

Acknowledgments

 First and foremost, I would like to thank my wife and children for their support

while attending AFIT. I would also like to thank my parents for providing me with so

many great opportunities growing up; truly making me the person I am today.

I sincerely appreciate the guidance and support provided by my faculty advisor,

Dr. Rusty Baldwin. His insight and experience kept me on the right track. I would also

like to thank the Anti-Tamper Software Protection Initiative Office from the Air Force

Research Laboratory for sponsoring me in this research.

 Joshua A. Benson

vi

Table of Contents

 Page

Abstract iv

Acknowledgments v

Table of Contents vi

List of Figures ix

List of Tables xviii

I. Introduction 1

1.1 Background 1

1.2 Research Goal and Objectives 2

1.3 Assumptions/Limitations 2

1.4 Implications 2

1.5 Preview 2

II. Literature Review 3

2.1 Chapter Overview 3

2.2 Obfuscation 3

2.3 Debuggers 3

2.4 Obfuscation Techniques 5

2.5 Measurement of Obfuscation 8

2.6 Concurrency Techniques 9

2.6.1 Compiler Optimizations 9

2.6.2 Data Dependency 10

2.6.3 Conversion of Standard Code to Parallel Code 11

2.7 Current Research 11

2.7.1 Evading Static Disassembly 12

2.7.1.1 Aliases 12

2.7.1.2 Junk Byte Insertion, Branch Functions, and Call Conversion 14

2.7.1.3 Obstructing Interprocedural Analysis, Merged Function Calls, and

Redundant Return Statements 15

2.7.1.4 Opaque Constructs via Concurrency 17

2.7.2 Evading Dynamic Disassembly 17

vii

2.7.2.1 Metamorphic Code and Subroutine Reordering 17

2.7.2.2 Dynamic Code Mutation 19

2.7.2.3 Hiding Program Slices 20

2.8 Summary 23

III. Methodology 24

3.1 Chapter Overview 24

3.2 Experimental Approach 24

3.3 System Boundaries 24

3.4 System Services 25

3.5 Workload 26

3.6 Performance Metrics 26

3.7 Parameters 27

3.7.1 System Parameters 27

3.7.2 Workload Parameters 28

3.8 Factors 28

3.9 Evaluation Technique 28

3.10 Experimental Design 29

3.11 Summary 30

IV. System Design, Development, and Validation 31

4.1 Chapter Overview 31

4.2 System Design 31

4.2.1 Hidden Function Design Details 32

4.2.2 Parallelization Design Details 32

4.3 System Development 33

4.3.1 Ggrep Development Details 33

4.3.2 SciMark2 Development Details 40

4.4 System Validation 47

4.4.1 Ggrep Validation Details 48

4.4.2 SciMark2 Validation Details 48

4.5 Summary 50

V. Analysis and Results 51

5.1 Chapter Overview 51

5.2 Ggrep Analysis 51

5.2.1 Ggrep Analysis, OllyDbg, Optimization-Off 51

5.2.2 Ggrep Analysis, OllyDbg, Optimization-On 59

5.2.3 Ggrep Analysis, OllyDbg, Optimization-Off Versus Optimization-On 65

5.3 SciMark2 Analysis 67

5.3.1 SciMark2 Analysis, OllyDbg, Optimization-Off 67

5.3.2 SciMark2 Analysis, OllyDbg, Optimization-On 71

viii

5.3.3 SciMark2 Analysis, OllyDbg, Optimization-Off Versus Optimization-On 75

5.4 Disassembly with OllyDbg and IDAPro 77

5.5 Summary 79

VI. Conclusions and Recommendations 80

6.1 Chapter Overview 80

6.2 Conclusions of Research 80

6.3 Research Contributions 81

6.4 Recommendations for Future Research 81

6.5 Summary 82

Appendix 83

Bibliography 145

ix

List of Figures

Figure Page

 2.1. Sample Inline Assembly and C code printing “Hello, World!!!” [Dub06]................. 3

 2.2. Disassembly of linear sweep and recursive traversal disassemblers [Dub06] 4

 2.3. Obfuscation Targets [CTL97]... 5

 2.4. Taxonomy of techniques [CTL97].. 6

 2.5. Structure of a high performance compiler [Wol96].. 9

 2.6. Sample program with data dependence graph [Wol96].. 10

 2.7. Dismantling of high-level constructs [WHK00, WDH03] 13

 2.8. Transform to indirect control transfers [WHK00, WDH03]. 14

 2.9. Completed transform using pointer manipulation [WHK00, WDH03].................... 14

 2.10. Branch functions [LiD03] ... 15

 2.11. Merge function calls into one call [OSS03].. 16

 2.12. Sample java code with Opaque Constructs using Concurrency [CoT98]............... 18

 2.13. Simple morphing function [Dub06].. 18

 2.14. Run-Time code mutation with clustering [MAM05].. 19

 2.15. Software splitting [ZhG03] ... 20

 2.16. Splitting of the function f initiated with slicing of variable a [ZhG03] 23

 2.17. ILP Arithmetic and Control Flow Complexities [ZhG03]...................................... 23

 3.1. System Under Test .. 25

 4.1. System Levels ... 31

x

 4.2. Ggrep.exe [Gha04] Main .. 34

 4.3. Ggrep Level 2 toRegular... 34

 4.4. Calls to HtoRegular... 35

 4.5. Initialization of Level 2 HtoRegular ... 36

 4.6. Hidden details of Level 2 HtoRegular .. 37

 4.7. Parallelization in Level 3 HtoRegular... 38

 4.8. Remapping in Level 3 HtoRegular ... 38

 4.9. General Tab of Ggrep Optimization-On ... 39

 4.10. Optimization Tab of Ggrep Optimization On... 39

 4.11. Code Generation Tab of Ggrep Optimization On... 39

 4.12. Optimization Tab of Ggrep Optimization Off .. 40

 4.13. FFT function call... 41

 4.14. Level 2 FFT... 42

 4.15. Level 2 LU .. 43

 4.16. Level 2 MonteCarlo .. 43

 4.17. Level 2 SOR.. 44

 4.18. Level 2 Sparse... 44

 4.19. Case 1 of __try in Level 3 H_LU.. 45

 4.20. Cases 2 and 3 of __try in Level 3 H_LU... 46

 4.21. Decoy Sections of Level 3 H_Monte .. 47

 4.22. Multi-Processor Validation... 48

 4.23. FFT Validation.. 49

xi

 4.24. MonteCarlo Validation ... 49

 5.1. Mean Interval Plot of Ggrep Expression 1 with Optimization Off and OllyDbg 56

 5.2. Mean Interval Plot of Ggrep Expression 2 with Optimization Off and OllyDbg 57

 5.3. Mean Interval Plot of Ggrep Expression 3 with Optimization Off and OllyDbg 58

 5.4. 4-in-1 Plot for Ggrep Expression 1 with OllyDbg and Optimization Off,

Levels 1-5 ... 59

 5.5. Mean Interval Plot of Ggrep Expression 1 with Optimization On and OllyDbg...... 62

 5.6. Mean Interval Plot of Ggrep Expression 2 with Optimization On and OllyDbg...... 63

 5.7. Mean Interval Plot of Ggrep Expression 3 with Optimization On and OllyDbg...... 64

 5.8. 4-in-1 Plot for Ggrep Expression 2 with OllyDbg and Optimization On,

Levels 1-5 ... 64

 5.9. Mean Interval Plot of Ggrep Expression 1 with OllyDbg and Optimization On

versus Optimization Off ... 65

 5.10. Mean Interval Plot of Ggrep Expression 2 with OllyDbg and Optimization On

versus Optimization Off ... 66

 5.11. Mean Interval Plot of Ggrep Expression 3 with OllyDbg and Optimization On

versus Optimization Off ... 66

 5.12. Mean Interval Plot of FFT with OllyDbg and Optimization Off 69

 5.13. Mean Interval Plot of FFT with OllyDbg and Optimization Off Levels 1-2 70

 5.14. Regression Model of FFT with OllyDbg and Optimization Off, Levels 1-5.......... 71

 5.15. 4-in-1 Plot of FFT with OllyDbg and Optimization Off, Levels 1-5...................... 72

 5.16. Mean Interval Plot of FFT with OllyDbg and Optimization On Levels 1-5........... 74

 5.17. Regression Model of FFT with OllyDbg and Optimization On, Levels 1-5........... 74

 5.18. 4-in-1 Plot of FFT with OllyDbg and Optimization On, Levels 1-5 75

 5.19. Mean Interval Plot of Monte with Optimization On and Off with OllyDbg,

Levels 1-2 ... 76

 A.1. Regression Model for Ggrep Expression 1 with OllyDbg and Optimization Off,

Levels 1-5 ... 83

xii

 A.2. Regression Model for Ggrep Expression 2 with OllyDbg and Optimization Off,

Levels 1-5 ... 83

 A.3. Regression Model for Ggrep Expression 3 with OllyDbg and Optimization Off,

Levels 1-5 ... 84

 A.4. 4-in-1 Plot for Ggrep Expression 2 with OllyDbg and Optimization Off,

Levels 1-5 ... 84

 A.5. 4-in-1 Plot for Ggrep Expression 3 with OllyDbg and Optimization Off,

Levels 1-5 ... 85

 A.6. Regression Model for Ggrep Expression 1 with OllyDbg and Optimization On,

Levels 1-5 ... 85

 A.7. Regression Model for Ggrep Expression 2 with OllyDbg and Optimization On,

Levels 1-5 ... 86

 A.8. Regression Model for Ggrep Expression 3 with OllyDbg and Optimization On,

Levels 1-5 ... 86

 A.9. 4-in-1 Plot for Ggrep Expression 1 with OllyDbg and Optimization On,

Levels 1-5 ... 87

 A.10. 4-in-1 Plot for Ggrep Expression 3 with OllyDbg and Optimization On,

Levels 1-5 ... 87

 A.11. Mean Interval Plot of LU with OllyDbg and Optimization Off............................. 88

 A.12. Mean Interval Plot of Monte with OllyDbg and Optimization Off........................ 88

 A.13. Mean Interval Plot of SOR with OllyDbg and Optimization Off 89

 A.14. Mean Interval Plot of Sparse with OllyDbg and Optimization Off 89

 A.15. Mean Interval Plot of LU with OllyDbg and Optimization Off Levels 1-2........... 90

 A.16. Mean Interval Plot of Monte with OllyDbg and Optimization Off Levels 1-2...... 90

 A.17. Mean Interval Plot of SOR with OllyDbg and Optimization Off Levels 1-2 91

 A.18. Mean Interval Plot of Sparse with OllyDbg and Optimization Off Levels 1-2...... 91

 A.19. Regression Model for LU with OllyDbg and Optimization Off, Levels 1-5 92

xiii

 A.20. 4-in-1 Plot for LU with OllyDbg and Optimization Off, Levels 1-5 92

 A.21. Regression Model for Monte w/ OllyDbg and Optimization Off, Levels 1-5 93

 A.22. 4-in-1 Plot for Monte with OllyDbg and Optimization Off, Levels 1-5 93

 A.23. Regression Model for SOR with OllyDbg and Optimization Off, Levels 1-5....... 94

 A.24. 4-in-1 Plot for SOR with OllyDbg and Optimization Off, Levels 1-5................... 94

 A.25. Regression Model for Sparse w/ OllyDbg and Optimization Off, Levels 1-5 95

 A.26. 4-in-1 Plot for Sparse with OllyDbg and Optimization Off, Levels 1-5................ 95

 A.27. Mean Interval Plot of LU with OllyDbg and Optimization On Levels 1-5............ 96

 A.28. Mean Interval Plot of Monte with OllyDbg and Optimization On Levels 1-2 96

 A.29. Mean Interval Plot of SOR with OllyDbg and Optimization On Levels 1-5 97

 A.30. Mean Interval Plot of Sparse with OllyDbg and Optimization On Levels 1-5 97

 A.31. Regression Model for LU w/ OllyDbg and Optimization On, Levels 1-5 98

 A.32. 4-in-1 Plot for LU with OllyDbg and Optimization On, Levels 1-5...................... 98

 A.33. Regression Model for Monte w/ OllyDbg and Optimization On, Levels 1-5........ 99

 A.34. 4-in-1 Plot for Monte with OllyDbg and Optimization On, Levels 1-5................. 99

 A.35. Regression Model for SOR w/ OllyDbg and Optimization On, Levels 1-5......... 100

 A.36. 4-in-1 Plot for SOR with OllyDbg and Optimization On, Levels 1-5 100

 A.37. Regression Model for Sparse w/ OllyDbg and Optimization On, Levels 1-5...... 101

 A.38. 4-in-1 Plot for Sparse with OllyDbg and Optimization On, Levels 1-5 101

 A.39. Mean Interval Plot of FFT with Optimization On and Off with OllyDbg,

Levels 1-2 ... 102

 A.40. Mean Interval Plot of LU with Optimization On and Off with OllyDbg,

Levels 1-2 ... 102

xiv

 A.41. Mean Interval Plot of SOR with Optimization On and Off with OllyDbg,

Levels 1-2 ... 103

 A.42. Mean Interval Plot of Sparse with Optimization On and Off with OllyDbg,

Levels 1-2 ... 103

 A.43. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization Off..... 105

 A.44. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization Off..... 105

 A.45. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization Off..... 106

 A.46. Mean Interval Plot of FFT with IDAPro and Optimization Off 106

 A.47. Mean Interval Plot of LU with IDAPro and Optimization Off 107

 A.48. Mean Interval Plot of Monte with IDAPro and Optimization Off....................... 107

 A.49. Mean Interval Plot of SOR with IDAPro and Optimization Off.......................... 108

 A.50. Mean Interval Plot of Sparse with IDAPro and Optimization Off....................... 108

 A.51. Mean Interval Plot of FFT with IDAPro and Optimization Off,

Levels 1 and 2... 109

 A.52. Mean Interval Plot of LU with IDAPro and Optimization Off,

Levels 1 and 2... 109

 A.53. Mean Interval Plot of Monte with IDAPro and Optimization Off,

Levels 1 and 2... 110

 A.54. Mean Interval Plot of SOR with IDAPro and Optimization Off,

Levels 1 and 2... 110

 A.55. Mean Interval Plot of Sparse with IDAPro and Optimization Off,

Levels 1 and 2... 111

 A.56. Regression Model for Ggrep Expression 1 w/ IDAPro and Optimization Off,

Levels 1-5 ... 111

 A.57. 4-in-1 Plot for Ggrep Expression 1 with IDAPro and Optimization Off,

Levels 1-5 ... 112

 A.58. Regression Model for Ggrep Expression 2 w/ IDAPro and Optimization Off,

Levels 1-5 ... 112

xv

 A.59. 4-in-1 Plot for Ggrep Expression 2 with IDAPro and Optimization Off,

Levels 1-5 ... 113

 A.60. Regression Model for Ggrep Expression 3 w/ IDAPro and Optimization Off,

Levels 1-5 ... 113

 A.61. 4-in-1 Plot for Ggrep Expression 3 with IDAPro and Optimization Off,

Levels 1-5 ... 114

 A.62. Regression Model for FFT w/ IDAPro and Optimization Off, Levels 1-5 116

 A.63. 4-in-1 Plot for FFT with IDAPro and Optimization Off, Levels 1-5................... 116

 A.64. Regression Model for LU w/ IDAPro and Optimization Off, Levels 1-5............ 117

 A.65. 4-in-1 Plot for LU with IDAPro and Optimization Off, Levels 1-5..................... 117

 A.66. Regression Model for Monte w/ IDAPro and Optimization Off, Levels 1-5....... 118

 A.67. 4-in-1 Plot for Monte with IDAPro and Optimization Off, Levels 1-5 118

 A.68. Regression Model for SOR w/ IDAPro and Optimization Off, Levels 1-5 119

 A.69. 4-in-1 Plot for SOR with IDAPro and Optimization Off, Levels 1-5 119

 A.70. Regression Model for Sparse w/ IDAPro and Optimization Off, Levels 1-5 120

 A.71. 4-in-1 Plot for Sparse with IDAPro and Optimization Off, Levels 1-5 120

 A.72. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization On 122

 A.73. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization On 123

 A.74. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization On 123

 A.75. Mean Interval Plot of FFT w/ IDAPro and Optimization On 124

 A.76. Mean Interval Plot of LU w/ IDAPro and Optimization On................................ 124

 A.77. Mean Interval Plot of SOR w/ IDAPro and Optimization On 125

 A.78. Mean Interval Plot of Sparse w/ IDAPro and Optimization On 125

 A.79. Mean Interval Plot of FFT w/ IDAPro and Optimization On,

Levels 1 and 2... 126

xvi

 A.80. Mean Interval Plot of LU w/ IDAPro and Optimization On,

Levels 1 and 2... 126

 A.81. Mean Interval Plot of Monte w/ IDAPro and Optimization On,

Levels 1 and 2... 127

 A.82. Mean Interval Plot of SOR w/ IDAPro and Optimization On,

Levels 1 and 2... 127

 A.83. Mean Interval Plot of Sparse w/ IDAPro and Optimization On,

Levels 1 and 2... 128

 A.84. Regression Model for Ggrep Expression 1 w/ IDAPro and Optimization On,

Levels 1-5 ... 128

 A.85. 4-in-1 Plot for Ggrep Expression 1 with IDAPro and Optimization On,

Levels 1-5 ... 129

 A.86. Regression Model for Ggrep Expression 2 w/ IDAPro and Optimization On,

Levels 1-5 ... 129

 A.87. 4-in-1 Plot for Ggrep Expression 2 with IDAPro and Optimization On,

Levels 1-5 ... 130

 A.88. Regression Model for Ggrep Expression 3 w/ IDAPro and Optimization On,

Levels 1-5 ... 130

 A.89. 4-in-1 Plot for Ggrep Expression 3 with IDAPro and Optimization On,

Levels 1-5 ... 131

 A.90. Regression Model for FFT w/ IDAPro and Optimization On, Levels 1-5........... 133

 A.91. 4-in-1 Plot for FFT with IDAPro and Optimization On, Levels 1-5.................... 133

 A.92. Regression Model for LU w/ IDAPro and Optimization On, Levels 1-5 134

 A.93. 4-in-1 Plot for LU with IDAPro and Optimization On, Levels 1-5 134

 A.94. Regression Model for Monte w/ IDAPro and Optimization On, Levels 1-5 135

 A.95. 4-in-1 Plot for Monte with IDAPro and Optimization On, Levels 1-5 135

 A.96. Regression Model for SOR w/ IDAPro and Optimization On, Levels 1-5.......... 136

 A.97. 4-in-1 Plot for SOR with IDAPro and Optimization On, Levels 1-5................... 136

xvii

 A.98. Regression Model for Sparse w/ IDAPro and Optimization On, Levels 1-5 137

 A.99. 4-in-1 Plot for Sparse with IDAPro and Optimization On, Levels 1-5................ 137

 A.100. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization On

versus Off ... 140

 A.101. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization On

versus Off ... 140

 A.102. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization On

versus Off ... 141

 A.103. Mean Interval Plot of FFT w/ IDAPro and Optimization On versus Off,

Levels 1 and 2... 141

 A.104. Mean Interval Plot of LU w/ IDAPro and Optimization On versus Off,

Levels 1 and 2... 142

 A.105. Mean Interval Plot of Monte w/ IDAPro and Optimization On versus Off,

Levels 1 and 2... 142

 A.106. Mean Interval Plot of SOR w/ IDAPro and Optimization On versus Off,

Levels 1 and 2... 143

 A.107. Mean Interval Plot of Sparse w/ IDAPro and Optimization On versus Off,

Levels 1 and 2... 143

xviii

List of Tables

Table Page

 3.1. System Parameters .. 28

 3.2. Factors with Associated Levels ... 29

 3.3. Experimental Design... 30

 4.1. Iteration Settings for Function Calls ... 41

 5.1. Ggrep Expression 1 with Optimization Off and OllyDbg, Levels 1-5...................... 51

 5.2. Ggrep Expression 2 with Optimization Off and OllyDbg, Levels 1-5...................... 52

 5.3. Ggrep Expression 3 with Optimization Off and OllyDbg, Levels 1-5...................... 52

 5.4. Ggrep Exp1, Mean of Differences Levels 1 and 2.. 52

 5.5. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 1 with Optimization Off and OllyDbg.. 54

 5.6. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 2 with Optimization Off and OllyDbg.. 54

 5.7. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 3 with Optimization Off and OllyDbg.. 54

 5.8. Ggrep Expression 1 with Optimization On and OllyDbg, Levels 1-5 60

 5.9. Ggrep Expression 2 with Optimization On and OllyDbg, Levels 1-5 60

 5.10. Ggrep Expression 3 with Optimization On and OllyDbg, Levels 1-5 60

 5.11. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 1 with Optimization On and OllyDbg .. 61

 5.12. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 2 with Optimization On and OllyDbg .. 61

xix

 5.13. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 3 with Optimization On and OllyDbg .. 61

 5.14. Change in Execution Time (s) of Ggrep between Optimization Off and

Optimization On, OllyDbg and Levels 1-5 .. 65

 5.15. Ggrep Execu Size with Optimization Off and On with OllyDbg 67

 5.16. FFT with Optimization Off and OllyDbg, Levels 1-5 .. 67

 5.17. LU with Optimization Off and OllyDbg, Levels 1-5 .. 67

 5.18. Monte with Optimization Off and OllyDbg, Levels 1-5... 68

 5.19. SOR with Optimization Off and OllyDbg, Levels 1-5 ... 68

 5.20. Sparse with Optimization Off and OllyDbg, Levels 1-5... 68

 5.21. Cost Analysis for Threads, Levels 3-5.. 70

 5.22. FFT with Optimization On and OllyDbg, Levels 1-5 ... 72

 5.23. LU with Optimization On and OllyDbg, Levels 1-5... 72

 5.24. Monte with Optimization On and OllyDbg, Levels 1-5 ... 73

 5.25. SOR with Optimization On and OllyDbg, Levels 1-5 .. 73

 5.26. Sparse with Optimization On and OllyDbg, Levels 1-5 ... 73

 5.27. File Sizes for SciMark2 with Optimization On and Off with OllyDbg 77

 5.28. Disassembly Results, Levels 3 through 5 ... 78

 A.1. Ggrep with Optimization Off and IDAPro, Levels 1-5.. 104

 A.2. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 1 with Optimization Off and IDAPro ... 114

 A.3. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 2 with Optimization Off and IDAPro ... 114

 A.4. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 3 with Optimization Off and IDAPro ... 115

xx

 A.5. SciMark2 with Optimization Off and IDAPro, Levels 1-5.................................... 115

 A.6. Mean of Differences (Is there a statistically significant difference present?) using

FFT with Optimization Off and IDAPro.. 120

 A.7. Mean of Differences (Is there a statistically significant difference present?) using

LU with Optimization Off and IDAPro ... 121

 A.8. Mean of Differences (Is there a statistically significant difference present?) using

Monte with Optimization Off and IDAPro .. 121

 A.9. Mean of Differences (Is there a statistically significant difference present?) using

SOR with Optimization Off and IDAPro... 121

 A.10. Mean of Differences (Is there a statistically significant difference present?) using

Sparse with Optimization Off and IDAPro .. 121

 A.11. Ggrep with Optimization On and IDAPro, Levels 1-5 .. 122

 A.12. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 1 with Optimization On and IDAPro.. 131

 A.13. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 2 with Optimization On and IDAPro.. 131

 A.14. Mean of Differences (Is there a statistically significant difference present?) using

Ggrep Expression 3 with Optimization On and IDAPro.. 132

 A.15. SciMark2 with Optimization On and IDAPro, Levels 1-5................................... 132

 A.16. Mean of Differences (Is there a statistically significant difference present?) using

FFT with Optimization On and IDAPro... 138

 A.17. Mean of Differences (Is there a statistically significant difference present?) using

LU with Optimization On and IDAPro .. 138

 A.18. Mean of Differences (Is there a statistically significant difference present?) using

Monte with Optimization On and IDAPro... 138

 A.19. Mean of Differences (Is there a statistically significant difference present?) using

SOR with Optimization On and IDAPro.. 138

 A.20. Mean of Differences (Is there a statistically significant difference present?) using

Sparse with Optimization On and IDAPro... 139

xxi

 A.21. Mean of Differences for Ggrep Expressions 1-3 with IDAPro, Optimization Off vs

Optimization On (Is there a statistically significant difference between the same

levels when optimization is on and off?) ... 139

 A.22. Mean of Differences for SciMark2 with IDAPro, Optimization Off vs

Optimization On (Is there a statistically significant difference between the same

levels when optimization is on and off?) ... 139

 A.23. Cost per thread Analysis for SciMark2 OllyDbg and IDAPro with Optimization

Off .. 144

1

SOFTWARE PROTECTION AGAINST REVERSE ENGINEERING TOOLS

I. Introduction

1.1 Background

There are a multitude of techniques available to protect software. Development of

these techniques is largely driven by the financial losses incurred due to copyright

violations of digital rights and software piracy. Early defense mechanisms were largely

limited to direct media-based protection and serial numbers. These have since evolved

into online activations, hardware-based protection, and software as a service [Eli05].

Other techniques include processor dependent code, encryption, and obfuscation [CTL97,

CTL98].

Obfuscation with parallel code execution introduces multiple concurrent paths of

execution which obscures the true control flow of the program and makes tracing

execution with a dynamic disassembler difficult. Parallelization of code can be

accomplished via various programming practices. A programmer can manually program

the appropriate threads or identify sections of code to be parallelized during the coding

process. A compiler then generates the appropriate threads for the sections of code

identified by the programmer, relieving the programmer of the burden of keeping track of

threads. OpenMP [Ope05] is an example of a standard which supports automatic

generation of parallel code.

2

1.2 Research Goal and Objectives

The goal of this research is to prevent dynamic disassembly of object code. It is

hypothesized that it is more difficult for software code to be disassembled after

obfuscation. The particular approach to obfuscation is parallelization. Parallelization

executes independent blocks of code concurrently leading to multiple paths of execution

that will likely be difficult for an analyst or automated program to follow.

1.3 Assumptions/Limitations

An assumption in this research is that a hidden function is executed in a secure

section of memory, local to the machine. Accessing this function adds a delay relevant to

the size of the function. This delay is simulated to model the overhead of function

execution.

The use of OpenMP parallelization limits application of the techniques discussed

in this research to multi-processor, shared memory machines.

1.4 Implications

Parallel code execution masks the functionality in an executable file which can be

applied to software being developed by the Air Force.

1.5 Preview

 Chapter 2 provides relevant background information on obfuscation, debuggers,

and current research. Chapter 3 provides the experimental methodology. Chapter 4

provides detailed information on the design, development, and validation of the test

system. Chapter 5 provides statistical analysis and results of the experiment. Chapter 6

presents conclusions and recommendations for further research areas.

3

II. Literature Review

2.1 Chapter Overview

This chapter introduces obfuscation as a means of software protection. It also

presents background information relevant to this research. The chapter concludes with a

section on current research.

2.2 Obfuscation

Obfuscation is the process of obscuring or confusing [Web96]. Obfuscation of

software transforms source or object code such that it is more difficult for a human to

comprehend or a debugger to disassemble accurately. The obfuscated code should be

functionally equivalent from a user’s perspective [Eli05]. The obfuscation process will

likely introduce some performance degradation and an increase in size. This should be

kept in mind when weighing the cost versus the benefit of incorporating a particular

technique during the obfuscation process.

2.3 Debuggers

The operation of debuggers is key to understanding how obfuscation techniques

prevent disassembly. Figure 2.1 shows C code with a data byte inserted in the middle of

executable code [Dub06]. Many debuggers are not capable of disassembling the object

code produced by this code correctly due to the insertion of the data byte and jmp.

Figure 2.1. Sample Inline Assembly and C code printing “Hello, World!!!” [Dub06]

 _asm
 {
 jmp L1 ; logic to “skip” data byte
 _emit 0x00 ; inserted data byte
 L1:
 }
 printf("Hello, World!!!\n");

4

The disassemblers used by debuggers are implemented in one of two ways: linear

sweep or recursive traversal. Figure 2.2 shows the output of these two types of

disassemblers after encountering the inserted data byte [Dub06]. WinDbg is a linear

sweep disassembler. It goes through an executable line by line assuming everything in the

code section is indeed code. This type of disassembler is easy to confuse through code

obfuscation. The 00 byte in the example is interpreted as code and combined with the

following bytes until it decodes a valid, but incorrect instruction. In Figure 2.2, WinDbg

incorrectly produced add byte ptr [eax-28h], ch after the jmp instruction.

Figure 2.2. Disassembly of linear sweep and recursive traversal disassemblers [Dub06]

The other approach is a recursive traversal. This method is much more difficult to

confuse, since it follows the control flow of the program. Upon encountering the code in

Figure 2.1, a recursive traversal disassembler will follow the jump instruction in the

original C code, skipping over the inserted data byte. Once the flow of control is followed

to completion, the extra byte is then interpreted correctly as being data. IDA Pro [Ida06]

and OllyDbg [Oll05] are recursive traversal disassemblers [Eli05].

5

Another aspect of disassemblers is the type of analysis they perform on the object

code. Analysis can either be static or dynamic. In static disassembly the program being

disassembled is not executed, while dynamic disassembly executes the program. The

main difference between the two is the amount of time to complete the disassembly.

Static disassembly is proportional to the size of the program, while dynamic is a function

of the number of executed instructions [LiD03].

2.4 Obfuscation Techniques

Obfuscation techniques can be categorized into four general areas according to the

specific target of the transform being implemented: layout obfuscation, data obfuscation,

control flow obfuscation, and preventive transformation. Figure 2.3 is a graphical

representation of the target of these techniques [CTL97]. Figure 2.4 lists some techniques

used in the four areas [CTL97].

Figure 2.3. Obfuscation Targets [CTL97]

Layout obfuscation makes simple changes to the program including removing the

formatting of the program, scrambling variable names, and removing the programmer’s

comments [CTL97].

Data obfuscation changes the program’s use of data or data structures. The storage

of data can be obfuscated by replacing current data definitions with those which do not

Layout

Obfuscation

Control

Obfuscation

Data

Obfuscation

Preventive

Transformation

Transformation

Target

6

make sense for their intended use. For example, a loop iteration variable can be replaced

with another variable type besides an integer. This same principle can be applied to the

encoding of data types. Obfuscation via aggregation of data combines scalar variables or

changes the structure of arrays. The complexity of obfuscation introduced by the array

manipulation operations depends on the particular change being implemented. Splitting

and folding arrays is more likely to increase the complexity. However, merging and

flattening arrays does not have the same effect, although it does introduce a change in

structure. The order in which variables are declared in or the order elements occur in an

array can be obfuscated. In some cases, obfuscation includes randomization of declaration

order [CTL97].

Figure 2.4. Taxonomy of techniques [CTL97]

 Control obfuscation changes the flow of the program. Change to control flow can

be divided into three separate categories: aggregation transformations, order

7

transformations, and computation transformations [CTL97]. Aggregation transformations

remove the program structure which was carefully designed by the programmer to make

the code easy to follow and understand. Thus, this transformation removes the high-level

organization which once existed. Order transformations simply randomize the order of

instructions in the program. Computation transformations remove the original control

flow by adding new blocks of code [Eli05].

Opaque predicates can be used to obscure control flow. Opaque predicates are

deterministically known to the obfuscator, but are extremely difficult to determine after

obfuscation. Opaque predicates introduce what appears to the disassembler to be an

undetermined path of execution [CTL97]. A trivial example is an if-then-else statement

where the conditional is if (1==2). The true path leads to unreachable code, which is

never taken. While the false path is always taken [Eli05].

 Executing code in parallel also obscures the control flow. There are two

approaches to parallelizing code. The first approach is to insert new functions. These new

functions do nothing relevant to the program, but mislead the disassembler while

executing concurrently. The second approach divides the program into blocks of code

which have no data dependencies between blocks. These blocks are executed

concurrently leading to multiple paths of execution. This technique has been shown to

increase the number of execution paths exponentially during static analysis [CTL97].

Preventive transformations introduce changes which thwart automated tools

attempting to disassemble or deobfuscate the program. These transformations can be

inherent or targeted. Simply reordering a loop to be performed backwards is not

8

sophisticated enough to be considered an example of an inherent preventive

transformation. However, adding phantom variables which prevent a deobfuscator from

reproducing the correct forward version of the loop is a preventive transformation

[CTL97, Eli05].

2.5 Measurement of Obfuscation

 The level of code obfuscation can be measured using a combination of four

metrics. The first metric is potency. Potency measures how well obfuscation techniques

obscure the original program. McCabe and Harrison metrics are typically used to measure

the complexity of a program. The presumption is that as complexity rises, so does the

level of obfuscation [CTL98].

The second metric is resilience. Resilience measures how well a program will

stand up against attacks from an automated program. This metric combines two factors:

the amount of time required for a programmer to design and implement the automated

program, and the amount of time and memory required by the program to perform the

attack [CTL98].

The third metric is stealth. Stealth is the ability to hide from an analyst. Large

sections of code written in different styles or introducing large extraneous numbers for

the purpose of opaque variable calculations will draw the attention of an analyst [CTL98].

 The fourth element is the cost. Cost includes the delay in execution time and the

increase in program size [CTL98].

9

2.6 Concurrency Techniques

 Parallel code execution introduces multiple concurrent paths of execution.

Concurrency obscures the true control flow of the program such that it is difficult for a

dynamic disassembler to reconstruct the original correctly.

2.6.1 Compiler Optimizations

 Code optimization is carried out by compilers to decrease execution time.

However, the functionality of the program must not be changed during the optimization

process, otherwise the intent of the programmer is not preserved. Figure 2.5 is an example

optimization process carried out by certain high performance compilers [Wol96].

Figure 2.5. Structure of a high performance compiler [Wol96]

When optimizing for parallel execution, each block of code needs to be

optimized, not just the original program otherwise the program execution time will be

limited by the unoptimized blocks. A high performance compiler uses several phases to

optimize blocks of code. A standard front end for compilers will immediately transform

the program into a representation that does not retain the high-level structure of the

Tuples

Program Text

Abstract Syntax Trees

Instructions

High Level Optimizations

Front End

Low Level Optimizations

Code Generation

10

program. Concurrency, however, requires the high level structure be maintained for

further analysis in later phases of optimization. The front end of the high performance

compiler of Figure 2.5, for example, produces abstract syntax trees in the high level

optimization phase to use during its generation of pairs of ordered objects or tuples. The

low level optimization phase uses the tuples, along with the details of the machine (the

number of processors, the instruction pipeline, or the general architecture) to produce the

appropriate instruction set for code generation [Wol96].

2.6.2 Data Dependency

Given enough processors, data with no dependencies would allow an entire

program to be executed concurrently. Since such independence is unrealistic, data

dependencies need to be determined. Figure 2.6 [Wol96] provides a simple example of

data dependency.

Figure 2.6. Sample program with data dependence graph [Wol96]

In this example S2 is dependent on S1, since it uses A. If S2 were to be performed

before or concurrently with S1, A’s value could be wrong. This is an example of flow

dependence. Flow dependence occurs when a value is assigned and also used in a later

S4

S1: A=0
S2: B=A

S3: C=A + D

S4: D=2

S1

S3

S2

11

statement. S3 must occur before S4, since D is being reassigned in S4. This is an example

of anti-dependence. Anti-dependence occurs when a value is used and then changed in a

later statement. For S2 and S3, however, S2 can be executed before S3, S3 can be executed

before S2, or they can be executed concurrently. The three cases for S2 and S3 hold as

long as S1 is executed first. There is another type of dependence not illustrated in the

example called output dependence. Output dependence occurs when a value is assigned in

one statement and then later reassigned [Wol96].

2.6.3 Conversion of Standard Code to Parallel Code

 Achieving parallelization of code can be accomplished via programming practices

or automated tools. A programmer can manually program the appropriate threads or

identify sections of code to be parallelized during the coding process.

 Automated tools relieve the programmer of having to keep track of threads.

Modern tools are capable of taking the original code and creating threads automatically.

In OpenMP, for example, identifying the section of code to be executed in parallel simply

requires inserting the appropriate OpenMP pragmas [GaI05]. However, variables must be

examined to determine if they need to be shared or kept private to the thread and declared

appropriately.

2.7 Current Research

 Code obfuscation is the focus of many research efforts. Many of these center on

preventing static disassembly. It is instructive to review them to determine how they are

related. Disassembly approaches can be categorized based on the type of analysis being

conducted.

12

2.7.1 Evading Static Disassembly

2.7.1.1 Aliases

Static analysis can be prevented by introducing extra pointers called aliases to

obscure the control flow. In a scheme designed to disrupt control flow [WHK00], the

effectiveness of aliases rest on three architectural elements. The first element is a secure

control server. The second is secure network communications between the deployed

program and the control server. The third element is regular program communication with

the control server to verify its state.

Aliases prevent intelligent tampering and impersonation attacks, while the

architectural elements enable a program to perform self-checking and defend against

other attacks. Intelligent tampering and impersonation attacks require a detailed analysis

of the program. Aliases increase the difficulty of performing the analysis in a three-

phased approach. Figure 2.7 shows the first phase, dismantling of high level constructs

[WHK00, WDH03]. All high-level language control flow structures (cases, whiles, for-

loops) are replaced with an equivalent if-then-goto statement. This creates a flattened

representation of the program with data dependencies between branches as shown in

Figure 2.8. The global variable swVar is used to control the flow. The variable is updated

appropriately to maintain the original control flow. For example, S1 first performs the

initialization of variables a and b, then assigns 2 to swVar. After returning to the switch,

flow will proceed to S2.

13

Figure 2.7. Dismantling of high-level constructs [WHK00, WDH03]

The second phase creates a global array in which branches are determined

dynamically, instead of the branches being constant values assigned to swVar as in Figure

2.8. The third phase adds extra pointers in every function. Figure 2.9 shows the final

version of the program after completing the transformation [WHK00, WDH03]. The

pointers are assigned through introduced code to valid data variables and global data. All

of the original references to the variables are replaced with pointers to include the data

dependencies introduced in the first phase. Static analysis of this code will result in the

incorrect conclusion that the global array is changing. This increases the number of

possible flows of control [WHK00, WDH03].

14

Figure 2.8. Transform to indirect control transfers [WHK00, WDH03].

Figure 2.9. Completed transform using pointer manipulation [WHK00, WDH03]

2.7.1.2 Junk Byte Insertion, Branch Functions, and Call Conversion

Another obfuscation approach [LiD03] prevents static disassembly by combining

several techniques [CTL97]. As implemented, the system is capable of implementing

junk byte insertion, branch functions, and call conversion [LiD03]. These three

15

transformations exploit the weaknesses of static disassemblers to determine the return of

control flow.

Junk bytes inserted where the disassembler would typically expect to find valid

executable code must: (1) be a partial instruction and (2) not be reachable at runtime

[LiD03].

Figure 2.10 illustrates the implementation of branch functions [LiD03]. The

branching function determines the location to branch to, b1, based on the calling location,

a1. This exploits the assumption that the flow of control will return to the location

following the initial function call.

Figure 2.10. Branch functions [LiD03]

Call conversion places junk bytes immediately after function calls, where they

would normally be disallowed because they could be reached at runtime. The call is

converted in a branching function which branches beyond the inserted junk bytes

[LiD03].

 2.7.1.3 Obstructing Interprocedural Analysis, Merged Function Calls, and

Redundant Return Statements

a1: call f

 ….

a2: call f

 ….

an: call f

 (b) Code using a branch function

f
a1: jmp b1

 ….

a2: jmp b2

 ….

an: jmp bn

 (a) Original code

b1

b2

bn

b1

b2

bn

16

 Obfuscation techniques targeting interprocedural analysis can also obscure

intraprocedural analysis. The [OSS03] implementation is very similar to the process used

by [WHK00, WDH03] for creating aliases, except it focuses on obscuring flow of control

between functions and not just within a function. It also uses a three phased approach.

Phase one decomposes functions into smaller functions. Phase two forces the use of

function pointers for all function calls. Phase three uses arrays to randomly store function

addresses.

 Additional techniques for obstructing interprocedural analysis include merging

function calls and introducing redundant return statements [OSS03]. Figure 2.11 is an

example of merging function calls into one function [OSS03]. Functions with the same

return types are selected at random to be included in the new merged function. A position

variable is created to maintain the calling position. In the example, sw is maintaining this

position. The introduction of redundant return statements uses opaque predicates in

conditional statements so debuggers may perceive a possible alternate flow of control.

Figure 2.11. Merge function calls into one call [OSS03]

func1() {…}
func2() {…}

func() {
…
func1();
func2();
…
}

int sw;
func1() {…}
func2() {…}
func3() {…
 switch (sw) {
 case 0: func1(); break;
 case 1: func2(); break;
 …
 }
…
}
func() {…
 sw = (sw-1)*sw%2; …
 func3();
 sw = sw*sw*(sw+1)*(sw+1)%4+1;…
 func3(); …
}

17

2.7.1.4 Opaque Constructs via Concurrency

 The use of concurrent threads can increase the possible paths of execution making

it difficult to perform static analysis. For example, n statements in a parallel section can

be executed in n! ways [CTL97, CoT98, Low98]. When concurrency is combined with a

strong opaque predicate, it would require exponential time to determine the true control

flow [CTL97, CoT98, Low98]. As implemented in [CTL97, CoT98, Low98], a global

data structure is updated by concurrently executing threads. The data structure always

contains a deterministic opaque value regardless of the execution order of the threads.

Figure 2.12 [CoT98] uses the opaque predicate with the property that 7y
2
-1 will never

equal x
2
, given any integer x and y. In this example, two threads s and t wakeup

occasionally to make updates to the values of the global variables M.X and M.Y. The

threads update the variables with random integers. It does not matter when the opaque

predicate (highlighted in the figure) is evaluated because Y-1 will never equal X [CoT98],

since X holds the square of an integer.

2.7.2 Evading Dynamic Disassembly

2.7.2.1 Metamorphic Code and Subroutine Reordering

 The advanced metamorphic engine in [Dub06] is capable of evading both linear

sweep and recursive traversal disassemblers by modifying a program during execution

which causes the disassembler to incorrectly perform an opcode shift where it should not

at certain points. These so-called morph points are locations where a program would

never purposely place an invalid opcode prefix. Thus, the resulting shifted opcode

appears believable to the disassembler. A morphing function is used to bypass the

18

intended target of the incorrect opcode shift. Figure 2.13 shows a simple function capable

of morphing the return address [Dub06]. The morphing function below changes the return

address of its function call while it is on the stack by incrementing it by 2.

Figure 2.12. Sample java code with Opaque Constructs using Concurrency [CoT98]

Figure 2.13. Simple morphing function [Dub06]

The advanced metamorphic engine also includes subroutine reordering which uses

a function manager to shuffle and properly maintain an offset value to add to relative

address calls. Global parameter and return variables are also needed to handle inter-

function calls properly [Dub06].

morphFunction proc near
add byte ptr [esp+0], 2
retn

morphFunction endp

class S extends Thread {
 public void run() {
 while (true) {
 int R = (int) (Math.random() * 65536);
 M.X = R*R; Thread.sleep(3);
}}
class T extends Thread {
 public void run() {
 while (true) {
 Int R = (int) (Math.random().sleep(2));
 M.Y = 7*R*R; Thread.sleep(2);
 M.X *= M.X; Thread.sleep(5);
}}}
public class M {
 public static int X, Y;
 public static void main(String argv[]) {

 S s = new S(); s.start();
 T t = new T(); t.start();
 if ((Y-1)==X) �Opaque predicate will always evaluate to false
 System.out.println(“Bogus code!”);
 s.stop(); t.stop();
}}

19

2.7.2.2 Dynamic Code Mutation

 Dynamic code mutation [MAM05] implements a run-time editing process which

maps many different sections of code to the same section of memory. Functions needed at

run-time are replaced with templates and any references to the function are replaced with

a stub which will call an editing engine. The templates are copies of the original code

with random obfuscations to mislead the attacker. The editing engine uses an editing

script which has the blueprints for regenerating the function correctly. The editing script

contains the location of the functions template, the bytes which require changes, and their

correct values. Editing scripts are encrypted using a pseudorandom number generator

which has been seeded with an opaque variable [MAM05]. Two separate approaches are

implemented. Single pass mutation replaces all functions with separate templates, each

with their own editing scripts. Cluster-based mutations locate similar functions and

replace them with a standard template. Figure 2.14 shows an example of a cluster based

mutation [MAM05]. Each function still has a unique editing script to be used by the

editing engine to regenerate the original function.

Figure 2.14. Run-Time code mutation with clustering [MAM05]

20

2.7.2.3 Hiding Program Slices

Hiding program slices [ZhG03] divides function components into two parts, open

and hidden. While it is assumed an adversary can tamper with the open components, it is

not possible to gain access to the hidden portion, which is located on a secure device,

such as a smart card. Figure 2.15 [ZhG03] shows both the mapping and the runtime state

of a split function. S and C represent the state and the code of the open component, while

S’ and C’ represent that of the hidden component. The state and code required for the two

components to interact properly are s and c respectively.

Figure 2.15. Software splitting [ZhG03]

Splitting a function in this manner has two associated costs [ZhG03]. The first

cost is the communication delay between the secure device containing the hidden

21

component and the machine containing the open component. The second cost is the

computing power of the secure device. To keep both costs down, [ZhG03] implements

three restrictions. First, function calls from within a loop are excluded. Second, function

calls from within the hidden component are not allowed. Third, only scalar variables local

to the function are candidates for moving to the hidden component.

 Function splitting begins by selecting a variable to hide and creating a static

version in the hidden component. Statements are identified for slicing starting with the

one defining the hidden variable. Statements containing the hidden variable or other

variables defined at the same time are included in the slice. Next, the remaining variables

are analyzed to determine if they can lead to the value of the hidden variable. One of the

strengths of this approach is the attacker does not know how many variables are being

hidden. Keeping in mind the previous constraints (i.e. function calls, array references),

the left and right hand sides of each slice is examined to determine if one side, both sides,

or neither side should be include in the hidden component. Next, the remaining

statements in the function are examined to determine if they could divulge the existence

of hidden variable(s). If so, they are considered for inclusion or partial inclusion in the

hidden component.

Figure 2.16 [ZhG03] is an example where a is hidden. The mapping of the call to

the correct location in the hidden function is contained in the variable id. Any values

passed to the hidden function are contained in the array t. The first column shows the

original function with the slices identified in the boxes. The second column shows the

new open component with the same boxed statements converted to include calls to the

22

hidden component. The third column shows the hidden component and the corresponding

required work. As an example, the second boxed statement in the open component makes

a call to the hidden component. It sends the variables x, y, and the location l1. The array t

of the hidden component now contains x and y as the first two elements and id contains l1.

A switch on id causes the original work to be accomplished and the result to be stored in

the static variable a. Any integer can be returned to the open component, since it is not

used by any of the statements following it. The circled numbers 1-4 in the second column

identify locations where the returned value is used, which could give an attacker useful

information. For example, at location 1 the returned value is used to access the array A.

The authors refer to these points as Information Leak Points (ILP) [ZhG03].

ILPs are analyzed by the authors to determine the complexity of recreating the

hidden components associated them. The code corresponding to each ILP is characterized

by its arithmetic and control flow complexities [ZhG03]. Figure 2.17 shows the

complexities associated with the code for ILP 1 from the example. The arithmetic

complexity is determined by the statement’s type, inputs, and degree, denoted as <Type,

Inputs, Degree>. Type can be constant, linear, polynomial, rational, or arbitrary. Inputs

defines the number of variables from the open component which are used by the ILP.

Degree is the highest degree polynomial when the ILP is not arbitrary. The control flow

complexity is determined by the statement’s paths, predicates, and flow, denoted as

<Paths, Predicates, Flow>. Paths is defined as either constant or variable. Predicates and

Flow are both defined as either open or hidden [ZhG03].

23

Figure 2.16. Splitting of the function f initiated with slicing of variable a [ZhG03]

Figure 2.17. ILP Arithmetic and Control Flow Complexities [ZhG03]

2.8 Summary

 There are several methods available for obfuscating code. Some effectively

prevent static disassembly, while others are more robust and can prevent dynamic

disassembly. Determining the strength of obfuscation relies on several factors. All

obfuscation techniques come with an associated cost.

fILP = b – 1 = a + w – 1 = 3x + y + w – 1

AC(fILP) = < Linear, 3, 1 >

CC(fILP) = < constant, –, – >

24

III. Methodology

3.1 Chapter Overview

 This chapter presents the experimental methodology. The system is presented,

along with its services, boundaries, parameters, and workload. The factors varied and

their associated levels are also presented.

3.2 Experimental Approach

 To determine the validity of using parallel threads for security a baseline of the

workload application is established to perform code slicing similar to [ZhG03]. The only

exception being the hidden function is assumed to be executing from a secure location

local to the machine instead of on an external device. Parallel threads are introduced to

concurrently execute the sliced code of the hidden function. The number of parallel

threads is adjusted to determine the impact of increasing the number of potential

execution paths. The execution times of the different levels are analyzed to determine if

statistically significant differences are present.

3.3 System Boundaries

The System Under Test (SUT) is the parallelizing system. This system creates

obfuscated code by parallelizing the supplied benchmark code. Figure 3.1 shows the

system boundaries, parameters, workload, metrics, and expected outcome. The

components of the system include the parallelizing tool, the compiler, the debugger, and

the Operating System (OS). An OS is a program that manages the computer, including

hardware and software. It takes care of many different tasks and coordinates the different

elements of the computer [Eli05]. A compiler takes a source file written in a high level

25

language and generates corresponding machine code [Eli05]. A debugger is a program

which allows software developers to observe a program during execution [Eli05]. These

four components are essential to the system because they are required to produce the

obfuscated code. The Component Under Test (CUT) is the tool creating the parallelized

code.

Figure 3.1. System Under Test

3.4 System Services

The parallelizing tool provides a functionally equivalent parallelized version of

the source code. OpenMP API [Ope05] constructs implement the parallelized code.

Possible outcomes of the service are:

• the code functions correctly and can be disassembled

• the code functions correctly and cannot be disassembled

• the code does not function correctly and cannot be disassembled

• the code does not function correctly and can be disassembled

26

3.5 Workload

The system workload is benchmark and open source code. The SciMark2.0

benchmark [Sci2.0] and Ggrep [Gha04] are used. SciMark2.0 measures the performance

of common numerical algorithms in scientific and engineering applications. It consists of

five computational kernels: Fast Fourier Transfer (FFT), Successive Over-Relaxation

(SOR), Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization

[PoM04]. Ggrep is a DOS version of the popular UNIX grep utility. It determines if a

specified search criteria, a regular expression, matches any of the strings present in the

search file [Gha04]. These programs are used because being open source, their

availability will make it easier for others to reproduce the experiment if desired.

During execution of the parallelization tool, the system will obfuscate selected

functions from SciMark2.0 or Ggrep at a specified level. Level one provides no

obfuscation. Level two provides hidden functionality with no parallelization. This is

similar to hiding program slices [ZhG03]. Level three provides hidden functionality and

parallelization with four threads of execution. Levels four and five add an additional four

threads each. Ggrep uses three regular expressions to follow different control paths of

execution. The three expressions are: [n].*, [I].?, and

[!ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz].* respectively.

A test document to search within is also provided to Ggrep. The parallelization tool

produces new source code to run through the compiler to generate an executable file.

3.6 Performance Metrics

27

Metrics include the file size after obfuscation, the execution speed of the

obfuscated file, whether or not the obfuscated file is a functional equivalent of the

original, and whether or not the obfuscated file can be disassembled. The newly compiled

executable is measured in bytes to determine file size. The stopwatch function of Ggrep

starts timing upon entry to the main function and stops timing after searching the test

document for a match, just before exiting the program. The stopwatch function also

measures the execution time for all five SciMark2 functions. Time is measured in

seconds. Functionality of executables is measured in two ways. First, the executables

must exit normally including timing information. Second, the output must be the same as

the unparallelized versions.

3.7 Parameters

3.7.1 System Parameters

Table 3.1 lists the system parameters of the SUT. The operating system type

determines whether or not multi-threading is available. The presence of shared memory to

exchange data between multiple processors is required. The number of CPUs in the

system determines the number of blocks of code capable of true parallel execution. This

parameter also impacts runtime overhead in the OS. The type of debugger drives the

strength of the disassembly. The compiler chosen is capable of using OpenMP which

provides simplified multi-threading. The optimization level determines the amount of

optimization implemented by the compiler. The parallelizing tool is the component under

test.

28

Table 3.1. System Parameters

OS type

Shared Memory

CPUs

Compiler version

Compiler optimization levels

Debugger type

Parallelization tool

3.7.2 Workload Parameters

Workload parameters include the SciMark2.0 and Ggrep source code, the

particular function selection, and the test document and expression for Ggrep. The

parallelization tool instructs the obfuscation of a particular function.

3.8 Factors

 Factors and their associated levels are summarized in Table 3.2. The debugger

levels represent the two major disassemblers available. OllyDbg [Oll05] and IDAPro

[Ida06] which are both dynamic debuggers. It is important to vary the optimization levels

passed to the compiler as optimization can remove the effects of the parallelization tool.

A baseline for the benchmark code is also needed. The baseline is established by running

the system with the parallelizing tool not in use. All other experiments use the tool.

3.9 Evaluation Technique

A direct measurement of the system is carried out. The system is simple enough to

create with components available at AFIT. The system is composed of:

• Microsoft Windows XP Professional Version 5.1.2600 Service Pack 2 Build 2600

• 4.0 GB of RAM

• 2 dual-core processors with hyper-threading (8 Intel Xeon CPU 3.00 GHz)

29

• Microsoft Visual Studio 2005 Version 8.0.50727.42 [MVS05]

• OllyDbg version 1.10 (dynamic disassembler) [Oll05]

• IDAPro version 4.6.0.809 SPI 32-bit (dynamic disassembler) [Ida06]

• SciMark 2.0 benchmark [Sci2.0]

• Ggrep [Gha04]

The system is validated by determining that it is functional as defined in the

performance metrics section, and the validation section of Chapter 4.

Table 3.2. Factors with Associated Levels

Type of

debugger

Compiler

switches

Parallelizing Tool Benchmark Code

Level 1 OllyDbg optimization on not being used SciMark2 FFT

Level 2 IDAPro optimization off hidden function in use SciMark2 LU

Level 3

hidden function with 4

threads of parallelization

SciMark2 Monte

Level 4

hidden function with 8

threads of parallelization

SciMark2 SOR

Level 5

hidden function with 12

threads of parallelization

SciMark2 Sparse

Level 6 Ggrep Expression 1

Level 7 Ggrep Expression 2

Level 8 Ggrep Expression 3

 3.10 Experimental Design

A full factorial experiment is conducted. This requires a total of 160 experiments

without replications. Table 3.3 summarizes the factors and workload, along with the

number of associated levels. Each experiment is replicated 5 times which was sufficient

to obtain a width of +/- 10% from the mean at a confidence interval of 90%. This results

in a total of 800 experiments performed.

30

Table 3.3. Experimental Design

 Levels

Debugger type 2

Compiler switches 2

Parallelization tool 5

Benchmark code 8

3.11 Summary

 A direct measurement of the system using a full factorial experimental design

consisting of 800 experiments is described. The SUT obfuscates various functions in the

benchmark code. The SUT collects metrics on file size, execution speed, execution

functionality, and whether or not the obfuscated code can be disassembled or not by the

debugger present.

31

IV. System Design, Development, and Validation

4.1 Chapter Overview

 The tested system uses Ggrep and SciMark2 benchmark code. This chapter

describes the design, development, and validation for the implemented experimental

version of Ggrep and the five functions of SciMark2.

4.2 System Design

 The system functions at five different levels. Figure 4.1 shows the distinction

between levels. Level 1 is the baseline. Level 2 provides code slicing [ZhG03]

functionality with a hidden function. Slices of code from the baseline now function within

the hidden function. Level 3 provides parallelization of the hidden functionality of Level

2 with 4 threads of execution. Levels 4 and 5 provide the same parallelization of Level 3,

except with 8 and 12 threads of execution respectively.

Figure 4.1. System Levels

32

The system provides simulated security wrapping and unwrapping for the hidden

functions of Levels 2 through 5. Before the hidden function is used, bytes of code are

decrypted by a simple XOR procedure. When the hidden function is no longer needed, the

bytes of code are encrypted by same XOR procedure. This is not necessary for Level 1,

since there is no hidden function. This induces some delay relevant to the size of the

function to emulate the effect of the hidden function operating in a secure location in

memory. It also includes two versions of the Ggrep and SciMark2 executables for each

level. The first version has optimization off and the second has it on. The source code for

both versions is identical.

4.2.1 Hidden Function Design Details

Slicing of the function [ZhG03] involves selecting portions to be hidden from the

viewable function and executing them in a (assumed) secure area via a hidden function.

Since the secure area for this experiment is not actually implemented, functions execute

locally. However, the design of the hidden function used by the system is similar to that

of [ZhG03]. The hidden function requires static variables to maintain values. Referencing

of the sliced sections of code requires a call to the hidden function with a location

variable. A case statement switches on the location variable to access the appropriate

code and the hidden function returns a value for use by the calling function. Limitations

set forth by [ZhG03], as described in Section 2.7.2.3, are not adhered to since the hidden

function is not on an external device.

4.2.2 Parallelization Design Details

33

 Parallelization of Levels 3 through 5 takes the case statements of Level 2 and

turns them into parallelized code. Every case executes simultaneously with a minimum of

four cases. Identifying the sections of code to execute in parallel to the compiler simply

requires inserting the appropriate OpenMP [GaI05] pragmas. Examination of variables

determines if sharing among all threads is necessary or if they can be kept private to a

particular thread.

4.3 System Development

 This section presents differences between Levels 1 through 3. Levels 4 and 5 are

exactly the same as Level 3 except for a global variable change to account for the

increased number of threads used.

4.3.1 Ggrep Development Details

 Modification of Ggrep [Gha04] for Level 1 is limited to the addition of timing

code for metric collection. Timing statistics are collected using the StopWatch in

SciMark 2.0 [Sci2.0]. Timing is started after the assert(argc == 3); statement and stopped

after exiting the while loop as whown in Figure 4.2. Timing includes Ggrep converting

the specified search pattern to a regular expression and comparing it with each word from

the test document. Timing is reported prior to exiting the main function.

Level 2 modifications hide elements of the process of creating the regular

expression present in the function toRegular. These elements are removed and placed in

the function HtoRegular. Figures 4.3 and 4.4 present the Level 2 version of toRegular.

Figures 4.5 and 4.6 present HtoRegular. At first glance it would appear to be straight

forward to remove the details of toRegular, since the function already contains a case

34

statement. However, a dependency is present in the iteration counter i. This is a case of

anti-dependence. The variable is used and then updated before its normal single

increment. Therefore, the structure trgex of type tstring is created to hold both the regular

expression and the current value of the counter.

Figure 4.2. Ggrep.exe [Gha04] Main

Figure 4.3. Ggrep Level 2 toRegular

int main(int argc, char *argv[]){
 ifstream inFile(argv[2], ios::in);
 if(!inFile){
 cerr << "Description File is not found!" << endl;
 exit(1);
 }
 cout << "----------" << endl << "--------GREP--------"
<<endl;
 assert(argc == 3);
 Stopwatch Q = new_Stopwatch();
 Stopwatch_start(Q); �Timing Starts
 string rex = toRegular(argv[1]);
 rex = concatExpand(rex);
 IntoPost p(rex);
 rex = p.doTrans();
 NFA nfa = createNFA(rex);
 while(!inFile.eof()){
 string word = "";
 inFile >> word;
 if(process(word,nfa) == true)
 cout << word << endl;
 else;
 }
 Stopwatch_stop(Q); �Timing Stops
 printf("Time to Execute: %8.8f\n"
,Stopwatch_read(Q));
 Stopwatch_delete(Q);
}//main

string toRegular(char * expr)
{
struct tstring tregex;
tregex.iteration=0;
tregex.expression=expr;
string regex = ""; //the resulting regular expression
int i=0;
unsigned char encrypted[2768]={
/*006570:*/ 0x55, 0x8B, 0xEC,
/*006573:*/ 0x6A, 0xFF, 0x68, 0xFD, 0x55, 0x4E, 0x00, 0x64, 0xA1, 0x00, 0x00,
0x00, 0x00, 0x50, 0x81, 0xEC,
 . . .
 . . .
/*007023:*/ 0xE8, 0x02, 0xB7, 0xFF, 0xFF, 0x8B, 0xE5, 0x5D, 0xC3};
for (i=0; i<2768; i++)
 encrypted[i]=encrypted[i] ^ 0xFF;
 . . .
 . . .

35

Figure 4.4 shows two different calls to HtoRegular. Each call is the same except

for the location value being passed. The value of i is synchronized both before and after

the call. The current value of the regular expression is also stored in the variable regex,

but the details, contained in HtoRegular, for creating the expression remain hidden.

Figure 4.4. Calls to HtoRegular

The function HtoRegular accepts the tstring z and the integer location as

parameters as shown in Figure 4.5 and returns a tstring back to toRegular. Initialization of

HtoRegular includes all temporary variables used by elements moved into it, as well as its

own static version of the regular expression and the tstring hiddenstruct. It uses the

variable firsttime to complete the work only required on the first call to it, otherwise it

 . . .
 . . .
//process the entire string
 for(int i = 0; expr[i] != '\0' && expr[i] != '\"';)
 {
 if(!isOper(expr[i]))//if not an operator then a char
 {
 tregex.iteration=i;
 tregex=HtoRegular(tregex,0);
 regex=tregex.expression;
 i=tregex.iteration;
 i++;
 }
 else //it is an operator
 {
 switch(expr[i]) //a switch on the char read
 {
 case '(':
 tregex.iteration=i;
 tregex=HtoRegular(tregex,1);
 regex=tregex.expression;
 i=tregex.iteration;
 i++;
 break;
 ...
 ...

}
 }
 }
 for (i=0; i<2768; i++)
 encrypted[i]=encrypted[i] ^ 0xFF;
 return regex; //return the regular expression
}

36

copies the regular expression contained in z to the static local copy expression. Hidden

elements are accessed through the location variable. The first two cases are shown in

Figure 4.6. The entire function contains eight cases.

Figure 4.5. Initialization of Level 2 HtoRegular

After completion of HtoRegular, it is necessary to simulate the function being

wrapped and unwrapped. The functon location is identified in the executable using

OllyDbg[Oll05]. To simplify identification, temporary print statements are added to the

function. The limits of the entire function from the entry point to the return is identified.

The hex digits associated with the opcodes of the function are used to distinguish the

function in HexEdit [Hex02]. The hex for the function is copied to an array of unsigned

characters (cf., Figure 4.3). This assures the proper length for wrapping and unwrapping

the hidden function. Since the goal is to provide delay comparable to the size of the

function, a simple XOR with 0xFF for each character in the array is performed just after

tstring HtoRegular(tstring z, int location)
{
 static string regex="\0";
 stack<char> bracketStack;
 int m=0;
 string tempString2 = "()*";//cannot be part of output
 string tempS = "\0";
 string tempstring="\0";
 bool belong = true;//whether chars belong to the output or not
 int k=0;
 static struct tstring hiddenstruct;
 struct tstring t;
 t.expression="";
 t.iteration=0;
 tempstring=regex;
 static string expression="";
 static int firsttime=1;
 if (firsttime)
 {
 expression=z.expression;
 firsttime=0;
 }
 else z.expression=expression;
 ...
 ...

37

initialization of toRegular and just prior to exiting toRegular (cf., Figure 4.4). This same

process is used for the remainder of the levels and functions requiring wrapping and

unwrapping throughout the system.

Figure 4.6. Hidden details of Level 2 HtoRegular

Level 3 modifications transform the work of HtoRegular from Level 2 as in

Figure 4.6, to a version executing in parallel as shown in Figure 4.7. The function

toRegular remains unchanged. Since Level 3 limits parallelization to four threads, half of

the eight cases execute simultaneously. When one finishes, the next section starts. This

continues until all of the sections finish. The #pragma omp parallel sections indicate the

sections of code to be executed in parallel using the number of threads specified by the

global variable Num_of_Threads_to_Use. The sections themselves are identified by the

#pragma omp section declarations. It would be possible to introduce threads that do not

implement any functionality of the original function by simply adding additional sections.

...
 ...
switch (location){
case 0: t=z;
 tempstring=regex;
 tempstring += bracket; //add a bracket
 tempstring += t.expression[t.iteration];//the char
 tempstring += cBracket; //enclose the bracket
 t.expression=tempstring;
 hiddenstruct=t;
 break;
case 1: t=z;
 tempstring=regex;
 tempstring += bracket;
 t.expression=tempstring;
 hiddenstruct=t;
 break;
case 2:

...
 ...

}//switch
regex=t.expression;
return t;
}

38

However, this was not accomplished for this example. Each thread has its own private

version of variable tempstring. This assures any work done for the real thread of

execution is not corrupted. The final version of the tstring t is stored in the shared array

holding. Indirect mapping ensures no correlation between the location parameter of

HtoRegular and the array element the thread is saving to.

Figure 4.7. Parallelization in Level 3 HtoRegular

Figure 4.8 is the remapping of the array to the static variables via a switch on

location. The tstring being held is returned to toRegular.

Figure 4.8. Remapping in Level 3 HtoRegular

...

...
#pragma omp parallel sections firstprivate(regex,
z)private(tempstring,tempS,t)shared(holding)num_threads(Num_Threads_to_Use)
{
 #pragma omp section
 {
 t=z;
 tempstring=regex;
 tempstring += bracket; //add a bracket
 tempstring += t.expression[t.iteration];//the char
 tempstring += cBracket; //enclose the bracket
 t.expression=tempstring;
 holding[4]=t;
 }
 #pragma omp section
 {
 t=z;
 tempstring=regex;
 tempstring += bracket;
 holding[3]=t;
 }

...

...

...

...
switch (location){
 case 0: regex=holding[4].expression;
 return holding[4];
 case 1: regex=holding[3].expression;
 return holding[3];

...

...
 }//switch
}

39

 Ggrep with optimization turned on contains the property settings present in

Figures 4.9 through 4.11. Changes made from the default program in Visual C++

[MVS05] to the General and Code Generation tabs are driven by incompatibilities with

the optimization settings established in Figure 4.10 and incorrect results produced by test

runs of Ggrep.

Figure 4.9. General Tab of Ggrep Optimization-On

Figure 4.10. Optimization Tab of Ggrep Optimization On

Figure 4.11. Code Generation Tab of Ggrep Optimization On

40

 The optimization off version of Ggrep uses the same source code for each level

and property settings of the optimization on version with the exception of changes to the

optimization tab (see Figure 4.12). This ensures the same functionality.

Figure 4.12. Optimization Tab of Ggrep Optimization Off

 These two sets of property settings represent the optimization off and optimization

on settings for the entire system. This includes Levels 1 through 5 and both benchmark

applications.

4.3.2 SciMark2 Development Details

Several of the procedures used for Ggrep are performed for SciMark2 in the exact

same manner. These include the wrapping and unwrapping functionality, optimization

settings, the use of a location variable and a case statement, the use of static variables,

parallelization techniques, and duplicate source code used for each optimization set. Once

the slicing of the target function takes place in Level 2, it remains constant for the

remaining levels as was the case for Ggrep. At Levels 3-5, changes take place only to the

hidden function. Details described in the remainder of this section are limited to function

unique details.

41

Level 1 changes to SciMark2 include setting the number of iterations in each

function in kernel.c to constant values and including timing output. The values listed in

Table 4.1 allow functions to operate long enough for the system to introduce some

randomness through processor usage. These values remain constant for all Levels.

Table 4.1. Iteration Settings for Function Calls

Function Iterations

FFT 7000

LU 2000

Monte 10000

SOR 250

Sparse 500

Figure 4.13 shows the design of the function calls. The timer starts prior to loop

entry. The loop then makes the specified number of calls to the function. After exiting the

loop, the timer stops and the length required in seconds is displayed.

Figure 4.13. FFT function call

 Level 2 changes for FFT hides all of the double variables present in the function

by placing them into the hidden function H_FFT. A call to H_FFT passes the double

hidden, the integer dual, and the integer location. All of the doubles moved to H_FFT are

static to retain their values after ending the function calls. Figure 4.14 shows the changes

 ...
 ...
Stopwatch_start(Q);
for (i=0; i<7000; i++)//7000
 {
 FFT_transform(twoN, x); /* forward transform */
 FFT_inverse(twoN, x); /* backward transform */
 }
Stopwatch_stop(Q);
printf("FFT took %f seconds\n\n",Stopwatch_read(Q));
 ...
 ...

42

made to FFT_transform_internal. If the value of a variable is needed by the sliced

function, it is returned from H_FFT and stored in the local variable hidden. The array

data also remains local to FFT_transform_internal.

Figure 4.14. Level 2 FFT

Level 2 changes for LU_factor slices out the work being performed and moves it

to H_LU. Some of this work includes entire for loops. Figure 4.15 contains the remaining

functionality of LU_factor. All of the variables passed to it as parameters are forwarded to

H_LU, as well as the current i, j, and location.

 ...
 ...
for (bit = 0; bit < logn; bit++, dual *= 2) {
 int a;
 int b;
 hidden=H_FFT(hidden,dual,0) * direction;
 hidden=H_FFT(hidden,dual,1);
 for (a=0, b = 0; b < n; b += 2 * dual) {
 int i = 2*b ;
 int j = 2*(b + dual);
 hidden=H_FFT(data[j],dual,2);
 hidden=H_FFT(data[j+1],dual,3);
 data[j] = data[i] - H_FFT(data[i],dual,4);
 data[j+1] = data[i+1] - H_FFT(data[i+1],dual,5);
 data[i] += H_FFT(data[i], dual,4);
 data[i+1]+= H_FFT(data[i+1],dual,5);
 }
 for (a = 1; a < dual; a++) {
 H_FFT(hidden,dual,6);
 for (b = 0; b < n; b += 2 * dual) {
 int i = 2*(b + a);
 int j = 2*(b + a + dual);
 double z1_real = data[j];
 double z1_imag = data[j+1];
 H_FFT(z1_real,dual,7);
 H_FFT(z1_imag,dual,8);
 data[j] = data[i] - H_FFT(hidden,dual, 9);
 data[j+1] = data[i+1] - H_FFT(hidden,dual, 10);
 data[i] += H_FFT(hidden, dual,9);
 data[i+1]+= H_FFT(hidden, dual,10);
 }
 }
 }
 ...
 ...

43

Figure 4.15. Level 2 LU

Level 2 changes for MonteCarlo_integrate moves details of calculating the area

under the curve and statically stores it in H_Monte. The current value is returned and

stored in the local variable hidden. The only two calls to H_Monte are presented in Figure

4.16.

Figure 4.16. Level 2 MonteCarlo

 Level 2 changes for SOR_execute moves the matrix G and its manipulation to

H_SOR. The matrix is stored statically in H_SOR. Figure 4.17 presents the only two calls

 ...
 ...
hidden=H_LU(M, N, A, pivot, i, j, 0);
iterations=hidden;
for (j=0; j<iterations; j++)
 {
 hidden=H_LU(M, N, A, pivot, i, j, 1);
 for (i=j+1; i<M; i++)
 hidden=H_LU(M, N, A, pivot, i, j, 2);
 pivot[j]=hidden;
 hidden=H_LU(M, N, A, pivot, i, j, 3);
 if (hidden)
 return 1; /* factorization failed because of zero pivot */
 hidden=H_LU(M, N, A, pivot, i, j, 4);
 if (j<hidden)
 hidden=H_LU(M, N, A, pivot, i, j, 5);
 }
 ...
 ...

...
 ...
 hidden=H_MonteCarlo(0,0,0);//initialize
 for (count=0; count<Num_samples; count++)
 {
 double x= Random_nextDouble(R);
 double y= Random_nextDouble(R);
 hidden=H_MonteCarlo(x,y,1);
 }
 Random_delete(R);

...
 ...

44

to H_SOR. Although SOR_execute sends its version of the matrix to H_SOR at each call,

it is only used when the location is 0.

Figure 4.17. Level 2 SOR

Level 2 changes for SparseCompRow_matmult moves sum and its calculation to

H_Sparse. It is only available to SparseCompRow_matmult when it needs to be stored in

the array y. Figure 4.18 presents the only two calls to H_Sparse.

Figure 4.18. Level 2 Sparse

Level 3 for FFT parallelizes the switch present in H_FFT from Level 2 with a

total of 7 parallel sections. The finalizing of the hidden function, where static variables

are assigned the correct temporary value created by the thread, is accomplished with 11

 ...
 ...
for (p=0; p<num_iterations; p++)
 {
 for (i=1; i<Mm1; i++)
 {
 hidden=H_SOR(G, omega,0,i);
 for (j=1; j<Nm1; j++)
 hidden=H_SOR(G, omega,1,j);
 }
 }

...
 ...

 ...
 ...
for (reps=0; reps<NUM_ITERATIONS; reps++)
 {
 for (r=0; r<M; r++)
 {
 int rowR = row[r];
 int rowRp1 = row[r+1];
 H_Sparse(val,col,x, 0,0);
 for (i=rowR; i<rowRp1; i++)
 hidden=H_Sparse(val,col,x, i,1);
 y[r] = hidden;
 }
 }
 ...
 ...

45

cases. The difference rests in four cases where hidden values are returned, but no

additional work is accomplished. Unlike the Level 3 of Ggrep, individual variables are

defined prior to the parallel section versus in the #pragma omp parallel sections

declaration. For example, eight variables are hidden, one for each thread that uses it. Each

is initialized prior to entry into the parallel section.

 Level 3 for LU parallelizes the switch present in H_LU from Level 2 with a total

of 5 parallel sections. The finalizing of the hidden function is accomplished with 6 cases.

H_LU contains three parallel sections and if they are executed out of order errors occur.

Errors result from attempting to read parts of the matrix which do not yet exist. This

problem is resolved with the use of a __try statement. Figure 4.19 shows one of these

cases and Figure 4.20 presents two additional cases. Case 2 jumps over the if statement

by going to the label end. This avoids additional error generation, since temp_ab would

not contain a value. Case 3 sets the temp3 flag to 0.

Figure 4.19. Case 1 of __try in Level 3 H_LU

Level 3 for Monte parallelizes the switch present in H_Monte from Level 2 with a

total of 4 parallel sections. The finalizing of the hidden function is accomplished with 2

#pragma omp parallel sections num_threads(Num_Threads_to_Use)
{
 #pragma omp section
 {//case 0
 temp_minMN= M < N ? M : N;
 }//section
 #pragma omp section
 {//case 1
 temp_jp=j;
 __try{
 temp_t = fabs(A[j][j]);}
 __except(1)
 {;}
 }//section

...
 ...

46

cases. Due to the low number of cases present in Monte, two “decoy” sections exist. This

maintains the minimum of 4 threads. The “decoy” sections do similar work to calculate

the area under the curve. Case 1 in Figure 4.21 is the true thread, while Cases 2 and 3 are

the “decoy” threads. Entrance into the if statement is different for all three, as well as the

work being done to their local copies of temp_under_curve.

Figure 4.20. Cases 2 and 3 of __try in Level 3 H_LU

Level 3 for SOR parallelizes the switch present in H_SOR from Level 2 with a

total of 4 parallel sections. The finalizing of the hidden function is accomplished with 3

cases. One of the finalizing cases is present for validation purposes only, since the matrix

G remains hidden in H_SOR. As with Level 3 H_Monte, two “decoy” threads exist. One

of the other threads contains a __try statement as well.

 ...
 ...

#pragma omp section
 {//case 2
 __try
 {
 temp_ab = fabs(A[i][j]);
 }
 __except(1)
 {goto end;}
 if (temp_ab > t)
 {
 temp2=1;
 temp_jp2 = i;
 temp_t2 = temp_ab;
 }
 end:;
 }//section
 #pragma omp section
 {//case 3
 __try{
 if(A[jp][j] == 0)
 temp3=1;}
 __except(1){temp3=0;}

 }//section
 ...
 ...

47

Figure 4.21. Decoy Sections of Level 3 H_Monte

 Level 3 for Sparse parallelizes the switch present in H_Sparse from Level 2 with a

total of 4 parallel sections. The finalizing of the hidden function is accomplished with 2

cases. Similar to Level 3 H_SOR, two of the threads are “decoy” calculations of sum and

one thread contains a __try statement.

4.4 System Validation

 This section presents the validation procedures used to determine if a function is

working properly or not. Changes to code are typically limited to the inclusion of print

statements. Each experiment saves output to a text file for validation. The successful

completion of the executable is also a measure of validity. Threads are validated to be

 ...
 ...
#pragma omp section

 {//case 1
 temp_under_curve2=under_curve;
 if (x*x + y*y <= 1.0)
 {
 temp1=1;
 temp_under_curve2 ++;
 }
 }//section
 #pragma omp section
 {//case 2--decoy
 temp_under_curve3=under_curve;
 if (x*x + y*y == 1.0)
 {
 temp2=1;
 temp_under_curve3 --;
 }
 }//section
 #pragma omp section
 {//case 3--decoy
 temp_under_curve4=under_curve;
 if (x*x + y*y > 1.0)
 {
 temp3=1;
 temp_under_curve4=temp_under_curve4+10;
 }
 }//section
 ...
 ...

48

executing in parallel through print statements distinguishing the thread numbers. Multi-

processor validation is accomplish by viewing the Windows Task Manager similar to

Figure 4.22

Figure 4.22. Multi-Processor Validation

4.4.1 Ggrep Validation Details

 Validation of Ggrep takes place by comparing the text file for all 5 levels to one

another for the three separate test expressions used. File comparison using the program

KDiff3 [Eib06] determines if the output is correct or not. The files should be exactly the

same with the exception of the time required for completion present in the files.

4.4.2 SciMark2 Validation Details

 Similar to Ggrep, captured text files are compared using KDiff3 [Eib06]. Unlike

Ggrep, each of the five functions requires the inclusion of some print statements to

examine certain data points. Figure 4.23 presents the validation for FFT. A static counter

49

is used to determine the cycle the function is currently on. When the counter hits a certain

value, the data array prints out a select number of its elements. This same technique is

used for LU and Sparse.

Figure 4.23. FFT Validation

The validation of MonteCarlo uses a switch statement to print out the value of the

variable hidden on certain cycles. Hidden contains the value of the variable under_curve

from H_Monte. Figure 4.24 presents the validation of MonteCarlo.

Figure 4.24. MonteCarlo Validation

 The validation of SOR is accomplished via a call to H_SOR during cycle 249. A

call to H_SOR is required, since the current matrix for G is present in H_SOR. This call

does spin off the parallel sections; however, no work is saved to the static variables, since

if (cycle_count==13999){
 printf("FFT validation\n");
 printf("data[0] is %f\n",data[0]);
 printf("data[100] is %f\n",data[100]);
 printf("data[500] is %f\n",data[500]);
 printf("data[1000] is %f\n",data[1000]);
 printf("data[1023] is %f\n",data[1023]);
 cycle_count=0;
 }
 else cycle_count++;

switch(cycle_count){
 case 0:
 printf("MonteCarlo validation\n");
 cycle_count++;
 break;
 case 100:
 printf("Under_curve is %d at cycle %d\n",hidden,cycle_count);
 cycle_count++;
 break;

...

...

50

the switch on the location variable leads to only printing out the desired sample points of

the matrix G.

4.5 Summary

 The system under test is comprised of modifications to five functions of SciMark2

and one of Grep. Each system has five levels of obfuscation. The first level is the

baseline. The second implements program slicing [ZhG03] with the use of a hidden

function. The third adds four parallel threads of execution to the hidden function. The

fourth and fifth add an additional four threads each to the hidden function. Validation

statements and timing have been added to the functions.

51

V. Analysis and Results

5.1 Chapter Overview

 This chapter presents statistical analysis and results based on the data gathered

through the experiments on Ggrep and SciMark2. Analysis is completed in three phases

for each system. The first phase looks at the impact of the Levels within the OllyDbg data

set with optimization off. The second looks at the impact of the Levels within the

OllyDbg data set with optimization on. The last phase compares the two previous sets.

Since the executables for the IDAPro and OllyDbg data sets were identical, IDAPro

exhibited the same behavior as OllyDbg and therefore IDAPro’s analysis with exception

of disassembly testing is presented in the Appendix (Tables A.1 through A.23 and Figures

A.43 through A.107).

5.2 Ggrep Analysis

5.2.1 Ggrep Analysis, OllyDbg, Optimization-Off

 Tables 5.1 through 5.3 present the mean execution time (in seconds), standard

deviation, and a 90% confidence interval of Ggrep with Expressions 1 through 3

respectively with OllyDbg and optimization turned off. Five samples are collected at each

level.

Table 5.1. Ggrep Expression 1 with Optimization Off and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 18.299 0.007 [18.292, 18.305]

2 (hidden function in use) 18.311 0.016 [18.297, 18.326]

3 (hidden function w/ 4 threads) 18.206 0.007 [18.200, 18.213]

4 (hidden function w/ 8 threads) 18.205 0.001 [18.204, 18.205]

5 (hidden function w/ 12 threads) 18.317 0.039 [18.280, 18.354]

52

Table 5.2. Ggrep Expression 2 with Optimization Off and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 5.4066 0.011 [5.3961, 5.4171]

2 (hidden function in use) 5.438 0.038 [5.4018, 5.4742]

3 (hidden function w/ 4 threads) 5.372 0.0067 [5.3656, 5.3784]

4 (hidden function w/ 8 threads) 5.3658 0.0084 [5.3578, 5.3738]

5 (hidden function w/ 12 threads) 5.3658 0.0084 [5.3578, 5.3738]

Table 5.3. Ggrep Expression 3 with Optimization Off and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 219.25 0.18 [219.08, 219.43]

2 (hidden function in use) 218.26 0.06 [218.20, 218.32]

3 (hidden function w/ 4 threads) 217.5 0.25 [217.26, 217.73]

4 (hidden function w/ 8 threads) 217.22 0.13 [217.10, 217.34]

5 (hidden function w/ 12 threads) 217.2 0.11 [217.09, 217.30]

It is easy to see that each of the three test expressions result in varying means.

This is expected, as the three expressions follow different paths of execution within

Ggrep. Although there is a distinct difference in the systems caused by the expression

used, it is not as easy to discern if there is a difference among the levels for each separate

expression. They appear to be similar, but to determine if a statistically significant

difference exists between the levels, the confidence interval of the mean of differences is

calculated using the data in Table 5.4 where bi is the before measurement, ai is the after

measurement, di is bi – ai

Table 5.4. Ggrep Exp1, Mean of Differences Levels 1 and 2

bi (Level 1) ai (Level 2) di = bi – ai

18.2960 18.3270 -0.0310

18.2960 18.3110 -0.0150

18.3110 18.3270 -0.0160

18.2950 18.2960 -0.0010

18.2950 18.2960 -0.0010

53

and
n

s
tdcc d

n 1;2/21),(
−

=
α

m where d is the mean value of di which is - 0.0128 seconds,

1;2/ −nt
α

 is 4;05.t which is 2.1318, sd is the standard deviation of di which is 0.0125 seconds,

and n is the sample size which is 5. This results in the confidence interval (c1,c2) equal to

)
5

0125.
)(1318.2(0128.0

s
s m− which is [-0.0247, -0.0009]. Since the confidence interval

does not include zero, there is a statistically significant difference between the execution

times of the system set at Level 1 and Level 2 with 90% confidence. Tables 5.5 through

5.7 identify where statistically significant differences are among the Levels for Ggrep

executed with Expressions 1 through 3 because the calculated confidence intervals do not

include zero. Levels 1 and 2 is the difference between the baseline and the sliced versions

of the system. Levels 1 and 3 is the difference between the baseline and the sliced version

with 4 parallel threads. Levels 1 and 4 is the difference between the baseline and the

sliced version with 8 parallel threads of execution. Levels 1 and 5 is the difference

between the baseline and the sliced version with 12 threads of execution. Levels 2 and 3

is the difference between the sliced version and when parallel execution is introduced

with only 4 threads. Levels 2 and 4 is the difference between the sliced version and the

sliced version with 8 parallel threads. Levels 2 and 5 is the difference between the sliced

version and the version with 12 threads. Levels 3 and 4 is the difference between the

system with only 4 threads of parallel execution and the version with 8 threads. Levels 3

and 5 is the difference between the system with only 4 threads of parallel execution and

the version with 12 threads. Levels 4 and 5 is the difference between the system with 8

threads of parallel execution and 12 threads.

54

Table 5.5. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 1 with Optimization Off and OllyDbg

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES NO

2 (hidden function in use) X X YES YES NO

3 (hidden function w/ 4 threads) X X X NO YES

4 (hidden function w/ 8 threads) X X X X YES

5 (hidden function w/ 12 threads) X X X X X

Table 5.6. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 2 with Optimization Off and OllyDbg

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X NO YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table 5.7. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 3 with Optimization Off and OllyDbg

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X NO YES

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

There are differences among 2 of the 3 cases where a hidden function is first

introduced in Ggrep. This occurs in the change from Level 1 to Level 2. Statistically

significant differences occur among the execution times with all of the expressions from

Levels 2 to 3. Once Ggrep had parallel execution introduced in Level 3, there are no

statistically significant differences in the execution time by adding four additional threads

of execution. In only one case is there no difference detected when going from 4 threads

to 12 threads of execution. This was for Expression 2. The remaining expressions do have

55

a statistically significant difference in execution times. In two cases (Expression 2 and 3),

there is not a difference when going from 8 threads to 12 threads. In only the case of

Expression 1 is there no difference when going from the baseline to a hidden function

with 12 threads (Level 1 to Level 5) and from a sliced program with 0 threads to one with

12 threads (Level 2 to Level 5). A change is recognized with Expression 2 and 3 for these

two cases.

Looking at the interval plots (Figure 5.1 through 5.3) for each expression, these

differences are not obvious in all of the figures. In Figure 5.1, for example, the confidence

intervals for Levels 1 and 2 are overlapping. In fact, the lower bound for Level 2 is

18.297 (see Table 5.1). This includes the mean of Level 1 which by visual testing means

that there is no difference between the systems at the 90% confidence level. The

differences are so small that when taken out to the fourth decimal place the confidence

interval of the mean of differences does show a difference. However, rounding all the

numbers used in the calculations to only two decimal places shows the interval including

0, which means the systems are not statistically different. The statistically significant

difference between Levels 2 and 3 in the system is easy to see visually.

There appears to be a noticeable change in behavior when going from 8 parallel

threads to 12 threads. This change is due thread overhead for the particular test expression

being used. Although the increase appears large in Figure 5.1, it is important to keep the

scale in mind. There is only an increase of .112 seconds. The other two expressions do

not have this apparent jump.

56

Level

G
g
re
p
 E
x
p
 1
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

18.36

18.34

18.32

18.30

18.28

18.26

18.24

18.22

18.20

18.3166

18.204618.2062

18.3114

18.2986

Interval Plot of Ggrep Exp 1 Execution Time (s) vs Level
90% CI for the Mean

Figure 5.1. Mean Interval Plot of Ggrep Expression 1 with Optimization Off and OllyDbg

Figure 5.2 matches nicely with the statistically significant differences in the

execution times of the Ggrep expression 2 in Table 5.7. A simple visual test of the

confidence intervals for Levels 1 and 2 shows that they do intersect, meaning there is not

a difference between the systems. The same simple test also shows the difference between

Levels 2 and 3. There is no difference in the change from Level 3 to Level 4, since the

upper bound of the confidence interval for Level 4 is 5.3738 seconds (cf., Table 5.2), thus

the interval includes 5.372, the mean of Level 3. The system at Levels 4 and 5 has the

same mean and confidence intervals.

The change displayed in Figure 5.3 between Levels 3 and 4 seems small and

consistent with the fact that there is not a statistically significant difference between these

two levels. The lower bound of Level 3 is 217.26 (cf., Table 5.3). The confidence interval

does not include the mean of Level 4, 217.223 seconds. A t-test must be performed to

determine if there is a difference, since only the intervals are overlapping. The t-test

57

results in t equal to 2.19. This is larger than its critical value, causing the null hypothesis

that the systems are the same to be rejected. This does not correspond with Table 5.6

where the confidence interval of mean of differences identified a difference, since zero

was included in the interval. However, if the number of decimal places used in the

calculation is decreased to 2 the interval does start at zero. It is easy to see that the system

has the same behavior at Levels 4 and 5, where there is a small change. This change,

though, is just enough to cause a difference while going from Level 3 to 5. The upper

bound for Level 5 is 217.30. This means that neither of the intervals include the other

level’s mean value, so visually it is non conclusive whether the systems are the same or

not and one must rely on the mean of differences calculations or a t-test. The resulting t-

value is 2.48, rejecting the null hypothesis that they are the same systems. The confidence

interval for the mean of differences also identified that there is a difference between the

systems.

Level

G
g
re
p
 E
x
p
 2
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

5.475

5.450

5.425

5.400

5.375

5.350

5.36585.3658

5.372

5.438

5.4066

Interval Plot of Ggrep Exp 2 Execution Time (s) vs Level
90% CI for the Mean

Figure 5.2. Mean Interval Plot of Ggrep Expression 2 with Optimization Off and OllyDbg

58

Level

G
g
re
p
 E
x
p
 3
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

219.5

219.0

218.5

218.0

217.5

217.0

217.196217.223

217.495

218.261

219.254

Interval Plot of Ggrep Exp 3 Execution Time (s) vs Level
90% CI for the Mean

Figure 5.3. Mean Interval Plot of Ggrep Expression 3 with Optimization Off and OllyDbg

 Although statistically significant differences are present in the system, practically

there is not much of a difference at all. The user of the system would be minimally

impacted by differences. The ranges for the levels are .112 seconds for Expression 1,

.0722 seconds for Expression 2, and 2.05 seconds for Expression 3. The ideal level for all

expressions tested with Ggrep is Level 4. It is possible to introduce 8 threads of execution

for the same cost of only 4.

Models were built for all three expressions used with Ggrep, however, the

predictive power was extremely weak. Figures A.1 – A.3 in the appendix show the

regression equations for Ggrep Expression 1 through 3 respectively. R-Squared values of

0 for Expression 1, .408 for Expression 2 and .828 for Expression 3 are all weak. This

causes the models to be unreliable. The 4-in-1 plots for each of the expressions are very

similar to the one for Ggrep Expression 1 shown in Figure 5.4. The two additional 4-in-1

plots are Figures A.4 and A.5 of the appendix. There are distinct levels present in each of

59

their Residual versus Fitted Values graphs. This means the standard deviations are

correlated to the Levels. The errors are not independent as can be seen in the Residual

versus Order Plots. The Histogram of Residuals and the Probability Plots show the errors

are not normally distributed.

Residual

P
e
r
c
e
n
t

0.100.050.00-0.05-0.10

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

18.2818.2718.2618.25

0.10

0.05

0.00

-0.05

Residual

F
r
e
q
u
e
n
c
y

0.080.040.00-0.04

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.10

0.05

0.00

-0.05

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 1 Execution Time (s)

Figure 5.4. 4-in-1 Plot for Ggrep Expression 1 with OllyDbg and Optimization Off,

Levels 1-5

5.2.2 Ggrep Analysis, OllyDbg, Optimization-On

Once optimization is turned on for Ggrep, the mean execution times between

levels for each expression is even closer as seen in Tables 5.8 - 5.10. Furthermore, it is

necessary to validate that the optimization on versions have not removed the parallel

threads. Validation is accomplished by inspecting the output and viewing the number

threads via the task manager. The insertion of print statements to identify the separate

threads of execution at Levels 3-5 could cause a change in the compilers decision on what

60

to optimize. Verification with OllyDbg [Oll05] does show that the correct number of

threads are indeed spawned.

Table 5.8. Ggrep Expression 1 with Optimization On and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 16.108 0.076 [16.035, 16.180]

2 (hidden function in use) 16.209 0.093 [16.120, 16.297]

3 (hidden function w/ 4 threads) 16.174 0.051 [16.125, 16.223]

4 (hidden function w/ 8 threads) 16.159 0.082 [16.081, 16.238]

5 (hidden function w/ 12 threads) 16.15 0.029 [16.122, 16.178]

Table 5.9. Ggrep Expression 2 with Optimization On and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 4.7376 0.0069 [4.7310, 4.7442]

2 (hidden function in use) 4.747 0.0067 [4.7406, 4.7534]

3 (hidden function w/ 4 threads) 4.750 0.000 [4.750, 4.750]

4 (hidden function w/ 8 threads) 4.753 0.0067 [4.7466, 4.7594]

5 (hidden function w/ 12 threads) 4.750 0.000 [4.750, 4.750]

Table 5.10. Ggrep Expression 3 with Optimization On and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 193.4 0.24 [193.17, 193.62]

2 (hidden function in use) 194.44 0.06 [194.38, 194.49]

3 (hidden function w/ 4 threads) 194.69 0.17 [194.54, 194.85]

4 (hidden function w/ 8 threads) 194.62 0.12 [194.51, 194.73]

5 (hidden function w/ 12 threads) 194.63 0.1 [194.53, 194.73]

To determine if there are any statistically significant differences among the

execution times, a confidence interval for the mean of differences is calculated between

each level as accomplished when optimization was turned off. Tables 5.11-5.13 show

where the statistically significant differences for the execution times are present in the

systems based on the exclusion of zero from the calculated confidence interval.

61

Expression 1 results in no statistically significant differences present between any of the

levels. Expression 2 results in there only being differences when going from the baseline

to every other level. There are not statistically significant differences present in the

remaining levels. Expression 3 results in there being differences present when going from

all levels to another, except from a level with parallel threads to another level with

parallel threads.

Table 5.11. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 1 with Optimization On and OllyDbg

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X NO NO NO NO

2 (hidden function in use) X X NO NO NO

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table 5.12. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 2 with Optimization On and OllyDbg

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X NO NO NO

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table 5.13. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 3 with Optimization On and OllyDbg

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

62

Looking at the interval plots (Figures 5.5 through 5.7) for each expression, these

differences are not obvious to see. The user of the system would find it difficult to notice

a difference in performance. It is easy to see there is no difference present in the Levels 2

through 5 of Ggrep with Expression 1 as shown in Figure 5.5. The most difficult case to

determine that a statistically significant difference is not present is in the change from

Level 1 to Level 2. The confidence intervals overlap, but neither of the others mean

execution time is included in the others confidence interval. A t-test is required to

determine for certain. It results in a t-value of 1.25, therefore the systems are the same.

Level

G
g
re
p
 E
x
p
 1
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

16.30

16.25

16.20

16.15

16.10

16.05

16.00

16.1498
16.1592

16.174

16.2086

16.1078

Interval Plot of Ggrep Exp 1 Execution Time (s) vs Level
90% CI for the Mean

Figure 5.5. Mean Interval Plot of Ggrep Expression 1 with Optimization On and OllyDbg

As with Ggrep Expression 1, the most difficult case to visually distinguish if a

difference is present in Ggrep Expression 2 or not is with the change from Level 1 to

Level 2. As shown in Figure 5.6, the confidence intervals are overlapping, but the mean

of neither level is included by the others confidence interval. This leaves distinguishing

the difference to the mean of differences calculation or a t-test, which both show a

statistically significant difference. The resulting t-value is -2.18, therefore the null

63

hypothesis does not hold true and there is a difference. Ggrep Expression 2 resulted in the

same sample, 4.75 seconds for every repetition of tests at Levels 4 and 5 when Ggrep was

executed with optimization on. This causes the confidence intervals for both to be zero,

as can be seen in Figure 5.7.

Level

G
g
re
p
 E
x
p

2
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

4.760

4.755

4.750

4.745

4.740

4.735

4.730

4.75

4.753

4.75

4.747

4.7376

Interval Plot of Ggrep Exp 2 Execution Time (s) vs Level
90% CI for the Mean

Figure 5.6. Mean Interval Plot of Ggrep Expression 2 with Optimization On and OllyDbg

In the case of Ggrep Expression 3, it is easy to visually distinguish where

differences are present in the system (see Figure 5.7). The hardest to see is the change

from Level 2 to 3, where the confidence intervals for the execution times come very

close, however they do not overlap.

Similar to Ggrep with optimization off, the creation of a model is not of value.

The regression models for all three expressions of Ggrep with optimization on and all 5

Levels are extremely weak according to their R-Squared values of 0, .35, and .53

respectively (see Figures A.6 through A.8).

64

Level

G
g
re
p
 E
x
p

3
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

195.0

194.5

194.0

193.5

193.0

194.627194.621
194.695

194.437

193.398

Interval Plot of Ggrep Exp 3 Execution Time (s) vs Level
90% CI for the Mean

Figure 5.7. Mean Interval Plot of Ggrep Expression 3 with Optimization On and OllyDbg

The 4-in-1 plots have the same properties as Ggrep with optimization on with the

exception of Ggrep Expression 2 where the errors have a greater dependence on the level

as seen in the Residuals versus Order of the Data plot of Figure 5.8. The 4-in-1 plots of

Expressions 1 and 3 are located in the appendix as Figures A.9 and A.10.

Residual

P
e
r
c
e
n
t

0.010.00-0.01

99

90

50

10

1

Fitted Value

R
e
si
d
u
a
l

4.7554.7504.7454.740

0.01

0.00

-0.01

Residual

F
r
e
q
u
e
n
c
y

0.0150.0100.0050.000-0.005-0.010

4.8

3.6

2.4

1.2

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.01

0.00

-0.01

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 2 (Execution Time)

Figure 5.8. 4-in-1 Plot for Ggrep Expression 2 with OllyDbg and Optimization On,

Levels 1-5

65

5.2.3 Ggrep Analysis, OllyDbg, Optimization-Off Versus Optimization-On

 Comparing Ggrep with optimization turned off with the version with optimization

turned on, the confidence intervals for the mean of differences between the execution

times at each level are calculated. There are statistically significant differences between

the systems at every level. These differences are easily distinguishable in the combined

Interval plots of Ggrep expressions 1 through 3 as shown in Figures 5.9 through 5.11. The

highest change in execution time takes place at Level 1 of Expression 3 where an increase

of 25.85 seconds is observed (see Table 5.14).

Table 5.14. Change in Execution Time (s) of Ggrep between Optimization Off and

Optimization On, OllyDbg and Levels 1-5

Level Expression 1 Expression 2 Expression 3

1 (baseline) -2.191 -0.669 -25.85

2 (hidden function in use) -2.102 -0.691 -23.82

3 (hidden function w/ 4 threads) -2.032 -0.622 -22.81

4 (hidden function w/ 8 threads) -2.046 -0.6128 -22.6

5 (hidden function w/ 12 threads) -2.167 -0.6158 -22.57

Level

54321

18.5

18.0

17.5

17.0

16.5

16.0

54321

Ggrep Exp 1 Opt-On Ggrep Exp 1 Opt-Off

90% CI for the Mean

Interval Plot of Ggrep Exp 1 Execution Time (s) for Opt-On and Opt-Off

Figure 5.9. Mean Interval Plot of Ggrep Expression 1 with OllyDbg and Optimization On

versus Optimization Off

66

Level

54321

5.5

5.4

5.3

5.2

5.1

5.0

4.9

4.8

4.7

54321

Ggrep Exp 2 Opt-On Ggrep Exp 2 Opt-Off

90% CI for the Mean

Interval Plot of Ggrep Exp 2 Execution Time (s) for Opt-On and Opt-Off

Figure 5.10. Mean Interval Plot of Ggrep Expression 2 with OllyDbg and Optimization

On versus Optimization Off

Level

54321

220

215

210

205

200

195

190

54321

Ggrep Exp 3 Opt-On Ggrep Exp 3 Opt-Off

90% CI for the Mean

Interval Plot of Ggrep Exp 3 Execution Time (s) for Opt-On and Opt-Off

Figure 5.11. Mean Interval Plot of Ggrep Expression 3 with OllyDbg and Optimization

On versus Optimization Off

When comparing the file sizes of the executables at each level (see Table 5.11),

all of the files decrease in size. Validation has already shown that the threads remain

present for Ggrep when optimization is turned on. This decrease in file size, therefore, is

not due to the compiler removing the parallel threads.

67

Table 5.15. Ggrep Executable Size with Optimization Off and On with OllyDbg

Level

Ggrep File Size

Opt-Off (bytes)

Ggrep File Size

Opt-On (bytes)

1 (baseline) 749568.000 622592.000

2 (hidden function in use) 778240.000 647168.000

3 (hidden function w/ 4 threads) 765952.000 634880.000

4 (hidden function w/ 8 threads) 765952.000 634880.000

5 (hidden function w/ 12 threads) 765952.000 634880.000

5.3 SciMark2 Analysis

5.3.1 SciMark2 Analysis, OllyDbg, Optimization-Off

 Tables 5.16 through 5.20 present the mean execution time (in seconds), standard

deviation, and a 90% confidence interval of SciMark2 with OllyDbg and Optimization

turned off. Five samples are collected at each level. In the baseline version of FFT (Level

1) and the sliced versions with zero threads (Level 2) of LU and SOR, the samples

collected within each program were the same causing their standard deviations to be zero.

The host system has not introduced enough random delays to cause some variation.

Table 5.16. FFT with Optimization Off and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 2.765 0.0000 [2.765, 2.765]

2 (hidden function in use) 9.757 0.0067 [9.7506, 9.7634]

3 (hidden function w/ 4 threads) 15456 1749 [13788, 17123]

4 (hidden function w/ 8 threads) 26159 726 [25466, 26851]

5 (hidden function w/ 12 threads) 38102 698 [37437, 38768]

Table 5.17. LU with Optimization Off and OllyDbg, Levels 1-5

Level Mean St-Dev 90% Confidence Interval

1 (baseline) 5.4098 0.0068 [5.4033, 5.4163]

2 (hidden function in use) 5.8280 0.0000 [5.8280, 5.8280]

3 (hidden function w/ 4 threads) 376.12 44.34 [333.85, 418.39]

4 (hidden function w/ 8 threads) 633.3 19.03 [615.16, 651.45]

5 (hidden function w/ 12 threads) 918.49 15.71 [903.51, 933.47]

68

Table 5.18. Monte with Optimization Off and OllyDbg, Levels 1-5

Level Mean St-Dev 90% Confidence Interval

1 (baseline) 4.5968 0.0068 [4.5903, 4.6033]

2 (hidden function in use) 5.8908 0.0004 [5.8904, 5.8912]

3 (hidden function w/ 4 threads) 1748.8 208.9 [1549.6, 1948.0]

4 (hidden function w/ 8 threads) 2951.6 100.8 [2855.4, 3047.7]

5 (hidden function w/ 12 threads) 4324.3 55.9 [4271.0, 4377.6]

Table 5.19. SOR with Optimization Off and OllyDbg, Levels 1-5

Level Mean St-Dev 90% Confidence Interval

1 (baseline) 4.7472 0.0129 [4.7349, 4.7595]

2 (hidden function in use) 6.453 0 [6.453, 6.4530]

3 (hidden function w/ 4 threads) 12969 201 [12778, 13161]

4 (hidden function w/ 8 threads) 25460 276 [25197, 25723]

5 (hidden function w/ 12 threads) 36131 203 [35937, 36325]

Table 5.20. Sparse with Optimization Off and OllyDbg, Levels 1-5

Level Mean St-Dev 90% Confidence Interval

1 (baseline) 5.6092 0.0004 [5.6088, 5.6096]

2 (hidden function in use) 13.541 0.083 [13.462, 13.620]

3 (hidden function w/ 4 threads) 25909 3062 [22989, 28829]

4 (hidden function w/ 8 threads) 44086 1468 [42686, 45485]

5 (hidden function w/ 12 threads) 64337 1006 [63378, 65295]

Looking at the interval plot for the execution times of the FFT function of

SciMark2, there are differences in the system between Levels 2 through 5 as shown in

Figure 5.12. This is also true for the other four functions of SciMark2 and can be seen in

the appendix at Figures A.11 through A.14. There is a drastic difference in the required

amount of time for the function to complete execution between Level 2 and Level 3. This

difference corresponds to when 4 parallel threads are introduced to the system. The means

continue to increase with the addition of 4 and 8 threads in Levels 4 and 5.

69

Level

FF
T
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

40000

30000

20000

10000

0

38102.3

26158.7

15455.8

9.7572.765

Interval Plot of FFT Execution Time (s) vs Level
90% CI for the Mean

Figure 5.12. Mean Interval Plot of FFT with OllyDbg and Optimization Off

 Differences are visible between every level of FFT. To ensure the confidence

intervals of Levels 1 and 2 are not intersecting, Figure 5.13 shows only the first two levels

for the FFT function of SciMark2. It is very clear that the two levels are different. This is

true for the other four functions and can be seen in the appendix at Figures A.15 through

A.18. It is not necessary to determine the confidence intervals using the mean of

differences of the execution times for comparing any of the levels.

Determining why there is such an extreme change from Level 2 to Level 3

requires examining the mean execution times, the number of calls made to the hidden

function, and the number of threads in use. Table 5.21 shows an analysis of the average

cost per call per thread. The overall average is 8.2855 x 10
-6
seconds for each thread

associated with a call to the hidden function of the five SciMark2 functions examined.

This adds up quickly with millions of calls made to each function.

70

Level

FF
T
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

10

9

8

7

6

5

4

3

2

9.757

2.765

Interval Plot of FFT Execution Time (s) vs Level
90% CI for the Mean

Figure 5.13. Mean Interval Plot of FFT with OllyDbg and Optimization Off Levels 1-2

 Table 5.21. Cost Analysis for Threads, Levels 3-5

Level

Num

Threads Function Mean

Calls to

Hidden

Function

Time per

Call

(Mean/Call)

Time per

Call/Num

Threads

3 4 FFT 15456 444542000 3.47684E-05 8.6921E-06

4 8 FFT 26159 444542000 5.88448E-05 7.3556E-06

5 12 FFT 38102 444542000 8.57107E-05 7.1426E-06

3 4 LU 376.12 10700000 3.51514E-05 8.7879E-06

4 8 LU 633.3 10700000 5.91869E-05 7.3984E-06

5 12 LU 918.49 10700000 8.58402E-05 7.1533E-06

3 4 Monte 1748.8 50005000 3.49725E-05 8.7431E-06

4 8 Monte 2951.6 50005000 5.90261E-05 7.3783E-06

5 12 Monte 4324.3 50005000 8.64774E-05 7.2064E-06

3 4 SOR 12969 301974751 4.29473E-05 1.0737E-05

4 8 SOR 25460 301974751 8.43117E-05 1.0539E-05

5 12 SOR 36131 301974751 0.000119649 9.9708E-06

3 4 Sparse 25909 748500000 3.46146E-05 8.6536E-06

4 8 Sparse 44086 748500000 5.88991E-05 7.3624E-06

5 12 Sparse 64337 748500000 8.59546E-05 7.1629E-06

71

 Attempting to create a model for the system for FFT of SciMark2, an R-squared

value of .944 is shown in Figure 5.14. However, this alone is not enough to have a good

model. One of the assumptions for a valid model is that the errors are normally

distributed. It can be seen in the Histogram of Residuals and the Normal Probability plots

of the 4-in-1 Plot for FFT in Figure 5.15 that the errors are not normally distributed. Also,

the Residual versus the Order of the Data shows dependence at Levels 1 and 2. The

Residuals versus the fitted values shows grouping among the levels in the standard

deviation. These properties also hold for the LU, Monte, SOR, and Sparse functions of

SciMark2. Their corresponding regression models and 4-in-1 plots are located in the

appendix at Figures A.19-A.26.

Figure 5.14. Regression Model of FFT with OllyDbg and Optimization Off, Levels 1-5

5.3.2 SciMark2 Analysis, OllyDbg, Optimization-On

Tables 5.22 through 5.26 contain the mean execution time (in seconds), standard

deviation, and a 90% confidence interval of SciMark2 with OllyDbg and Optimization

turned on. Five samples are collected at each level. Levels 3 through 5 for the Monte

function of SciMark2 fail to execute. This is the same exact code used with the

optimization off data sets, which did execute and validate successfully, but in this case

The regression equation is
FFT Execution Time (s) = - 14759 + 10235 Level

Predictor Coef SE Coef T P
Constant -14759 1685 -8.76 0.000
Level 10234.8 507.9 20.15 0.000

S = 3591.64 R-Sq = 94.6% R-Sq(adj) = 94.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 5237554341 5237554341 406.01 0.000
Residual Error 23 296697964 12899911
Total 24 5534252305

72

the compiler has removed something necessary for the function to operate correctly.

Using OllyDbg to validate that the parallel threads remain for SciMark2 when

optimization is turned on reveals that the compiler has completely removed them from

Levels 3 through 5.

Residual

P
e
r
c
e
n
t

1000050000-5000-10000

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

400003000020000100000

5000

2500

0

-2500

-5000

Residual

F
r
e
q
u
e
n
c
y

400020000-2000-4000-6000

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

5000

2500

0

-2500

-5000

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for FFT Execution Time (s)

Figure 5.15. 4-in-1 Plot of FFT with OllyDbg and Optimization Off, Levels 1-5

Table 5.22. FFT with Optimization On and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 3.9242 0.0072 [3.9174, 3.9310]

2 (hidden function in use) 10.081 0.06 [10.023, 10.138]

3 (hidden function w/ 4 threads) 69.472 0.026 [69.447, 69.496]

4 (hidden function w/ 8 threads) 69.457 0.078 [69.383, 69.531]

5 (hidden function w/ 12 threads) 69.5 0.08 [69.424, 69.576]

Table 5.23. LU with Optimization On and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 5.0032 0.0072 [4.9964, 5.0100]

2 (hidden function in use) 5.4252 0.0072 [5.4184, 5.4320]

3 (hidden function w/ 4 threads) 10.344 0.058 [10.288, 10.399]

4 (hidden function w/ 8 threads) 10.316 0.023 [10.293, 10.338]

5 (hidden function w/ 12 threads) 10.3 0.017 [10.284, 10.316]

73

Table 5.24. Monte with Optimization On and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 4.5756 0.0071 [4.5689, 4.5823]

2 (hidden function in use) 4.8092 0.0068 [4.8027, 4.8157]

3 (hidden function w/ 4 threads) N/A N/A N/A

4 (hidden function w/ 8 threads) N/A N/A N/A

5 (hidden function w/ 12 threads) N/A N/A N/A

Table 5.25. SOR with Optimization On and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 4.7438 0.0085 [4.7357, 4.7519]

2 (hidden function in use) 7.2314 0.0069 [7.2248, 7.2380]

3 (hidden function w/ 4 threads) 20.628 1 [19.674, 21.581]

4 (hidden function w/ 8 threads) 19.818 1.116 [18.754, 20.882]

5 (hidden function w/ 12 threads) 20.29 2.097 [18.291, 22.289]

Table 5.26. Sparse with Optimization On and OllyDbg, Levels 1-5

Level Mean St-Dev

90% Confidence

Interval

1 (baseline) 5.6058 0.0134 [5.5930, 5.6186]

2 (hidden function in use) 13.291 0.008 [13.283, 13.299]

3 (hidden function w/ 4 threads) 47.897 0.039 [47.860, 47.935]

4 (hidden function w/ 8 threads) 47.903 0.064 [47.842, 47.964]

5 (hidden function w/ 12 threads) 47.882 0.021 [47.861, 47.902]

 Although the parallel threads have been removed, the interval plots of each of the

programs are examined for the sake of completeness. In Figure 5.16 there are evident

differences between Levels 1-2 and Levels 2-3 for FFT. This holds true for the other four

functions of SciMark2 and can be seen the appendix at Figures A.27 through A.30. It is

difficult, however, to determine if differences are present between Levels 3 through 5 in

all of the functions except for Monte which does not have Levels 3 through 5 present.

Confidence intervals of the mean of differences in the execution times among the three

levels are calculated for each of the four functions. These confidence intervals reveal a

74

single statistically significant difference between the execution times at Levels 4 and 5 of

FFT.

Level

FF
T
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

70

60

50

40

30

20

10

0

69.500269.456669.4718

10.0806

3.9242

Interval Plot of FFT Execution Time (s) vs Level
90% CI for the Mean

Figure 5.16. Mean Interval Plot of FFT with OllyDbg and Optimization On Levels 1-5

Models were also attempted for FFT. However, as with SciMark2 with

optimization off the models for SciMark2 with optimization on are not valid because of

the properties of the errors present. Figure 5.17 shows the regression model with an R-

squared value of .762 for FFT with optimization on.

Figure 5.17. Regression Model of FFT with OllyDbg and Optimization On, Levels 1-5

The regression equation is
FFT (Execution Time) = - 12.7 + 19.1 Level

Predictor Coef SE Coef T P
Constant -12.672 7.162 -1.77 0.090
Level 19.053 2.159 8.82 0.000

S = 15.2689 R-Sq = 77.2% R-Sq(adj) = 76.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 18150 18150 77.85 0.000
Residual Error 23 5362 233
Total 24 23513

75

The 4-in-1 plot for FFT of SciMark2 with optimization on is contained in Figure

5.18. The Residuals versus the Order of Data plot for FFT shows that the errors are

dependent on the level. Its Residual versus Fitted Values plot clearly distinguishes the

five separate levels. The Normal Probability and the Histogram of the Residuals plots of

do not show a normal distribution for the errors. These do not support a valid model.

These same properties are present in the remaining four functions of SciMark2

with optimization on. The regression models and the associated 4-in-1 plots are Figures

A.31 through A.38 of the appendix.

Residual

P
e
r
c
e
n
t

40200-20-40

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

806040200

20

10

0

-10

-20

Residual

F
r
e
q
u
e
n
c
y

20100-10

10.0

7.5

5.0

2.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

20

10

0

-10

-20

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for FFT (Execution Time)

Figure 5.18. 4-in-1 Plot of FFT with OllyDbg and Optimization On, Levels 1-5

5.3.3 SciMark2 Analysis, OllyDbg, Optimization-Off Versus Optimization-On

Comparing the two different versions of SciMark2 is limited to just Levels 1 and

2 since the compiler removed the parallel threads of Levels 3 through 5 with optimization

on. Figure 5.19 shows the confidence intervals for Monte with optimization on and off.

76

The most difficult level to determine whether a difference is present in the execution time

is the baseline version, Level 1. This was not true for FFT and LU where the differences

between the levels are easily distinguishable (see Figures A.39 and A.40 of the appendix).

However, it is true for SOR and Sparse (see Figures A.41 and A.42). A confidence

interval of the mean of differences is calculated to determine if there are statistically

significant differences between the Level 1 versions of Monte, SOR, and Sparse. The

confidence intervals reveal that the SOR and Sparse functions are statistically equivalent

with optimization on and off. There is a difference in the Monte function.

Level

21

6.00

5.75

5.50

5.25

5.00

4.75

4.50

21

Monte Opt-On Exec Time (s) Monte Opt-Off Exec Time (s)

90% CI for the Mean

Interval Plot of Monte Execution Time (s) for Opt-On and Opt-Off

Figure 5.19. Mean Interval Plot of Monte with Optimization On and Off with OllyDbg,

Levels 1-2

 Comparing the file sizes for the version with optimization off and on shows a

decrease at every level. This is the same as Ggrep. Table 5.27 shows the executable file

sizes in bytes.

77

Table 5.27. File Sizes for SciMark2 with Optimization On and Off with OllyDbg

Level

SciMark2 File

Size Opt-Off

(bytes)

SciMark2 File

Size Opt-On

(bytes)

1 (baseline) 53248 24576

2 (hidden function in use) 65536 36352

3 (hidden function w/ 4 threads) 69632 38400

4 (hidden function w/ 8 threads) 69632 38400

5 (hidden function w/ 12 threads) 69632 38400

5.4 Disassembly with OllyDbg and IDAPro

 Relying on the experimental assumption that each of the hidden functions execute

in a secure area prevents debuggers from disassembling the hidden functions themselves.

This would essentially be equivalent to removing the hidden functions entirely from the

executable and attempting to disassemble them with a debugger. The lack of the hidden

function would cause application failure.

Setting this assumption aside and analyzing the system at the levels containing

parallel threads is extremely worthwhile. Table 5.28 summarizes when disassembly fails

in the system. Recall that SciMark2 with optimization on has no parallel threads due to

compiler actions. Therefore, it is not present in the table.

Disassembly of Levels 3 through 5 for Ggrep with optimization on and off is

possible with both OllyDbg and IDAPro debuggers. Both debuggers are capable of

disassembling and executing Ggrep with all three expressions without error. However,

when break points are set in an attempt to determine the functionality of the separate

threads, both debuggers have problems stepping through the additional threads.

78

Table 5.28. Disassembly Results, Levels 3 through 5

 Is OllyDbg

capable of

Executing?

Is OllyDbg

capable of

Executing with

break point set?

Is IDAPro

capable of

Executing?

Is IDAPro

capable of

Executing with

break point set?

Ggrep Exp1

Optimization Off

Yes No Yes No

Ggrep Exp1

Optimization On

Yes No Yes No

Ggrep Exp2

Optimization Off

Yes No Yes No

Ggrep Exp2

Optimization On

Yes No Yes No

Ggrep Exp3

Optimization Off

Yes No Yes No

Ggrep Exp3

Optimization On

Yes No Yes No

SciMark2

Optimization Off

Yes No Yes No

With OllyDbg, problems occur after executing the target thread until it completes

and enters a sleep state. It remains active with the other threads in a paused state. At this

point it is necessary to pause the target thread, since it is in a locked state. This leaves all

the threads in a paused state. After giving control back to the main thread and continuing

to attempt debugging, an access violation is encounter when returning back to one of the

additional threads. This behavior is not present during normal execution.

With IDAPro, a similar problem occurs leaving the program with warnings of

memory write problems. The break point is set at address 0040390F in the case of both

debuggers.

Disassembly of Levels 3 through 5 for SciMark2 with optimization off using

OllyDbg leads to access violations. This occurs with and without a breakpoint set at

0040181A. When using IDAPro, SciMark2 executes correctly without a break point set.

79

When the break point is set, the same problems occur that were present when Ggrep is

attempted to be executed.

These problems combined with the presence of multiple parallel threads make it

difficult for an attacker to track down the correct flow of execution. Stepping through the

execution is normal until the threads are started. This can be a deterrent, as the resources

required to determine the functionality increase with the number of threads.

5.5 Summary

 This chapter analyzes the Ggrep and SciMark2 systems. Ggrep’s performance

with optimization off and optimization on are similar. Although there are statistically

significant differences at every level, a user would be minimally impacted by the

difference in execution times. SciMark2 is statistically different at every level except for

two functions (SOR, Sparse) at the baseline level. There is a drastic cost associated with

implementing parallel threads with SciMark2 when optimization is off. Execution of each

thread averages 8.2855 x 10
-6
seconds. This hinders performance when the number of

function calls in SciMark2 are in the millions. The compiler removes the parallel threads

from SciMark2 when optimization is turned on. Both debuggers experience problems

when disassembling both Ggrep and SciMark2 when parallel threads are present.

80

VI. Conclusions and Recommendations

6.1 Chapter Overview

 This chapter presents the conclusions and the contributions of this research. It

concludes with recommendations for further areas of study which include parallel thread

execution.

6.2 Conclusions of Research

 This research proves that the inclusion of parallel threads with the concept of

program slicing [ZhG03] with a hidden function is a viable means of software security.

The cost of parallel threads should, however, be considered if calls to the hidden function

become extremely large as in the case of SciMark2. If the number of calls remain

relatively few, there will be no statistically significant difference between the baseline of

an application and the inclusion of twelve threads of parallel execution. Ggrep with

Expression 1 and optimization turned on demonstrates this.

 The use of parallel threads alone makes disassembly with a debugger more

difficult. In some cases, the debugger may experience problems as when break points are

introduced in both Ggrep and SciMark2.

Compiler optimizations can remove parallel threads during the compilation

process as seen in the SciMark2 system. However, this is not always the case since the

threads remained when optimization is turned on for Ggrep.

 In both Ggrep and SciMark2, increasing the number of threads present in an

application did not increase the executable size stored on disk. However, while the

81

increase from four to eight and eight to twelve threads has no impact on file size, there is

an increase when introducing threading to single threaded applications.

6.3 Research Contributions

 Software security should take advantage of multi-processor technology supported

by most computers. This research uses multi-threading with OpenMP and combines two

previously proven concepts. The first being the use of hiding program slices for security

[ZhG03], while the second is using parallel threads as a means of obfuscation [CTL97].

This research executes parallel threads from within a hidden function and proves it as a

viable option. It is possible to easily introduce multiple false paths of execution which

can perform similar or non-related work to mislead an attacker from the true functionality

of the program.

There is a limitation associated with the use of threads for security. The added

execution time associated with each thread adds up quickly if a large number of calls to

the hidden function are made.

Even so, this technique for software security can be directly applied to

applications developed for and by the Air Force.

6.4 Recommendations for Future Research

Since the demand for speed and performance are driving most computers to

include multi-processors, using parallel threads for security warrants further examination.

Some additional research topics are proposed below.

Implement this concept on a secure device. Instead of simulating the secure device

as in this research, implementation should be done on a real device. Although it may be

82

possible to execute an entire application in a secure area, resource restrictions will likely

not permit this.

Implement a security thread to detect any modifications. This thread could run

continually to check for modifications to the application. Upon detection, it could stop the

application from executing. This concept could also be implemented to detect the

presence of a debugger on a system.

Implement parallel threads which continuously check one another. If a thread

realizes another thread has stopped, as is the case when attempting to disassemble with a

debugger, the application could be stopped.

Parallel threads with metamorphic code. The concept of metamorphic code

[Dub06] along with parallel threads of execution has strong potential for security.

6.5 Summary

 The implementation of security through the use of parallel threads being executed

from a secure hidden function has both strengths and weaknesses. The concept is proven

possible, but is limited due to the cost associated with the use of threads. Care must be

taken to ensure parallel threads are not removed by a compiler if optimization is used.

83

Appendix

Figure A.1. Regression Model for Ggrep Expression 1 with OllyDbg and Optimization

Off, Levels 1-5

Figure A.2. Regression Model for Ggrep Expression 2 with OllyDbg and Optimization

Off, Levels 1-5

The regression equation is
Ggrep Exp 2 (Execution Time) = 5.44 - 0.0154 Level

Predictor Coef SE Coef T P
Constant 5.43578 0.01219 445.90 0.000
Level -0.015380 0.003676 -4.18 0.000

S = 0.0259904 R-Sq = 43.2% R-Sq(adj) = 40.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.011827 0.011827 17.51 0.000
Residual Error 23 0.015537 0.000676
Total 24 0.027364

Unusual Observations

 Ggrep Exp
 2
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 8 2.00 5.50000 5.40502 0.00637 0.09498 3.77R

R denotes an observation with a large standardized residual.

The regression equation is
Ggrep Exp 1 Execution Time (s) = 18.3 - 0.00708 Level

Predictor Coef SE Coef T P
Constant 18.2887 0.0259 706.90 0.000
Level -0.007080 0.007801 -0.91 0.373

S = 0.0551590 R-Sq = 3.5% R-Sq(adj) = 0.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.002506 0.002506 0.82 0.373
Residual Error 23 0.069978 0.003043
Total 24 0.072484

84

Figure A.3. Regression Model for Ggrep Expression 3 with OllyDbg and Optimization

Off, Levels 1-5

Residual

P
e
r
c
e
n
t

0.100.050.00-0.05

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

5.4255.4005.3755.350

0.10

0.05

0.00

Residual

F
r
e
q
u
e
n
c
y

0.100.080.060.040.020.00-0.02

12

9

6

3

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.10

0.05

0.00

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 2 (Execution Time)

Figure A.4. 4-in-1 Plot for Ggrep Expression 2 with OllyDbg and Optimization Off,

Levels 1-5

The regression equation is
Ggrep Exp 3 (Execution Time) = 219 - 0.515 Level

Predictor Coef SE Coef T P
Constant 219.432 0.158 1386.52 0.000
Level -0.51544 0.04772 -10.80 0.000

S = 0.337415 R-Sq = 83.5% R-Sq(adj) = 82.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 13.284 13.284 116.68 0.000
Residual Error 23 2.619 0.114
Total 24 15.902

Unusual Observations

 Ggrep Exp
 3
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 15 3.00 217.172 217.886 0.067 -0.714 -2.16R

R denotes an observation with a large standardized residual.

85

Residual

P
e
r
c
e
n
t

0.80.40.0-0.4-0.8

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

219.0218.5218.0217.5217.0

0.6

0.3

0.0

-0.3

-0.6

Residual

F
r
e
q
u
e
n
c
y

0.60.40.20.0-0.2-0.4-0.6-0.8

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.6

0.3

0.0

-0.3

-0.6

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 3 (Execution Time)

Figure A.5. 4-in-1 Plot for Ggrep Expression 3 with OllyDbg and Optimization Off,

Levels 1-5

Figure A.6. Regression Model for Ggrep Expression 1 with OllyDbg and Optimization

On, Levels 1-5

The regression equation is
Ggrep Exp 1 (Execution Time) = 16.1 + 0.0035 Level

Predictor Coef SE Coef T P
Constant 16.1495 0.0346 467.38 0.000
Level 0.00346 0.01042 0.33 0.743

S = 0.0736685 R-Sq = 0.5% R-Sq(adj) = 0.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.000599 0.000599 0.11 0.743
Residual Error 23 0.124822 0.005427
Total 24 0.125421

Unusual Observations

 Ggrep Exp
 1
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 9 2.00 16.3680 16.1564 0.0180 0.2116 2.96R

R denotes an observation with a large standardized residual.

86

Figure A.7. Regression Model for Ggrep Expression 2 with OllyDbg and Optimization

On, Levels 1-5

Figure A.8. Regression Model for Ggrep Expression 3 with OllyDbg and Optimization

On, Levels 1-5

The regression equation is
Ggrep Exp 3 (Execution Time) = 194 + 0.264 Level

Predictor Coef SE Coef T P
Constant 193.563 0.165 1169.77 0.000
Level 0.26416 0.04989 5.29 0.000

S = 0.352786 R-Sq = 54.9% R-Sq(adj) = 53.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 3.4890 3.4890 28.03 0.000
Residual Error 23 2.8625 0.1245
Total 24 6.3516

Unusual Observations

 Ggrep Exp
 3
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 4 1.00 193.156 193.827 0.122 -0.671 -2.03R

R denotes an observation with a large standardized residual.

The regression equation is
Ggrep Exp 2 (Execution Time) = 4.74 + 0.00308 Level

Predictor Coef SE Coef T P
Constant 4.73828 0.00274 1730.36 0.000
Level 0.0030800 0.0008256 3.73 0.001

S = 0.00583811 R-Sq = 37.7% R-Sq(adj) = 35.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.00047432 0.00047432 13.92 0.001
Residual Error 23 0.00078392 0.00003408
Total 24 0.00125824

Unusual Observations

 Ggrep Exp
 2
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 18 4.00 4.76500 4.75060 0.00143 0.01440 2.54R

R denotes an observation with a large standardized residual.

87

Residual

P
e
r
c
e
n
t

0.20.10.0-0.1-0.2

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

16.16716.16416.16116.15816.155

0.2

0.1

0.0

-0.1

Residual

F
r
e
q
u
e
n
c
y

0.200.150.100.050.00-0.05-0.10

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.2

0.1

0.0

-0.1

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 1 (Execution Time)

Figure A.9. 4-in-1 Plot for Ggrep Expression 1 with OllyDbg and Optimization On,

Levels 1-5

Residual

P
e
r
c
e
n
t

1.00.50.0-0.5-1.0

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

195.00194.75194.50194.25194.00

0.50

0.25

0.00

-0.25

-0.50

Residual

F
r
e
q
u
e
n
c
y

0.60.40.20.0-0.2-0.4-0.6

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.50

0.25

0.00

-0.25

-0.50

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 3 (Execution Time)

Figure A.10. 4-in-1 Plot for Ggrep Expression 3 with OllyDbg and Optimization On,

Levels 1-5

88

Level

L
U
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

900

800

700

600

500

400

300

200

100

0

918.489

633.303

376.121

5.8285.4098

Interval Plot of LU Execution Time (s) vs Level
90% CI for the Mean

Figure A.11. Mean Interval Plot of LU with OllyDbg and Optimization Off

Level

M
o
n
te
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

5000

4000

3000

2000

1000

0

4324.31

2951.56

1748.81

5.89084.5968

Interval Plot of Monte Execution Time (s) vs Level
90% CI for the Mean

Figure A.12. Mean Interval Plot of Monte with OllyDbg and Optimization Off

89

Level

S
O
R
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

40000

30000

20000

10000

0

36131.2

25459.9

12969.3

6.4534.7472

Interval Plot of SOR Execution Time (s) vs Level
90% CI for the Mean

Figure A.13. Mean Interval Plot of SOR with OllyDbg and Optimization Off

Level

S
p
a
rs
e
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

70000

60000

50000

40000

30000

20000

10000

0

64336.6

44085.5

25909.1

13.54085.6092

Interval Plot of Sparse Execution Time (s) vs Level
90% CI for the Mean

Figure A.14. Mean Interval Plot of Sparse with OllyDbg and Optimization Off

90

Level

L
U
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

5.8

5.7

5.6

5.5

5.4

5.828

5.4098

Interval Plot of LU Execution Time (s) vs Level
90% CI for the Mean

Figure A.15. Mean Interval Plot of LU with OllyDbg and Optimization Off Levels 1-2

Level

M
o
n
te
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

6.00

5.75

5.50

5.25

5.00

4.75

4.50

5.8908

4.5968

Interval Plot of Monte Execution Time (s) vs Level
90% CI for the Mean

Figure A.16. Mean Interval Plot of Monte with OllyDbg and Optimization Off Levels 1-2

91

Level

S
O
R
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

6.5

6.0

5.5

5.0

4.5

6.453

4.7472

Interval Plot of SOR Execution Time (s) vs Level
90% CI for the Mean

Figure A.17. Mean Interval Plot of SOR with OllyDbg and Optimization Off Levels 1-2

Level

S
p
a
rs
e
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

14

13

12

11

10

9

8

7

6

5

13.5408

5.6092

Interval Plot of Sparse Execution Time (s) vs Level
90% CI for the Mean

Figure A.18. Mean Interval Plot of Sparse with OllyDbg and Optimization Off Levels 1-2

92

Figure A.19. Regression Model for LU with OllyDbg and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

2001000-100-200

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

8006004002000

100

0

-100

Residual

F
r
e
q
u
e
n
c
y

100500-50-100

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

100

0

-100

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for LU Execution Time (s)

Figure A.20. 4-in-1 Plot for LU with OllyDbg and Optimization Off, Levels 1-5

The regression equation is
LU Execution Time (s) = - 348 + 245 Level

Predictor Coef SE Coef T P
Constant -348.26 40.44 -8.61 0.000
Level 245.36 12.19 20.12 0.000

S = 86.2154 R-Sq = 94.6% R-Sq(adj) = 94.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 3010161 3010161 404.97 0.000
Residual Error 23 170961 7433
Total 24 3181123

93

Figure A.21. Regression Model for Monte w/ OllyDbg and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

10005000-500-1000

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

40003000200010000

500

250

0

-250

-500

Residual

F
r
e
q
u
e
n
c
y

6004002000-200-400-600

6.0

4.5

3.0

1.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

500

250

0

-250

-500

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Monte Execution Time (s)

Figure A.22. 4-in-1 Plot for Monte with OllyDbg and Optimization Off, Levels 1-5

The regression equation is
Monte Execution Time (s) = - 1668 + 1159 Level

Predictor Coef SE Coef T P
Constant -1668.5 191.5 -8.71 0.000
Level 1158.51 57.75 20.06 0.000

S = 408.339 R-Sq = 94.6% R-Sq(adj) = 94.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 67107139 67107139 402.46 0.000
Residual Error 23 3835036 166741
Total 24 70942175

94

Figure A.23. Regression Model for SOR with OllyDbg and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

1000050000-5000-10000

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

400003000020000100000

5000

2500

0

-2500

-5000

Residual

F
r
e
q
u
e
n
c
y

400020000-2000-4000

4.8

3.6

2.4

1.2

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

5000

2500

0

-2500

-5000

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for SOR Opt-Off Execution Time (s)

Figure A.24. 4-in-1 Plot for SOR with OllyDbg and Optimization Off, Levels 1-5

The regression equation is
SOR Opt-Off Execution Time (s) = - 14398 + 9771 Level

Predictor Coef SE Coef T P
Constant -14398 1624 -8.86 0.000
Level 9770.6 489.7 19.95 0.000

S = 3462.89 R-Sq = 94.5% R-Sq(adj) = 94.3%

Analysis of Variance

Source DF SS MS F P
Regression 1 4773261136 4773261136 398.05 0.000
Residual Error 23 275806796 11991600
Total 24 5049067932

95

Figure A.25. Regression Model for Sparse w/ OllyDbg and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

100000-10000

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

600004500030000150000

10000

5000

0

-5000

-10000

Residual

F
r
e
q
u
e
n
c
y

75
00

50
00

25
000

-2
50
0

-5
00
0

-7
50
0

-1
00
00

6.0

4.5

3.0

1.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

10000

5000

0

-5000

-10000

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Sparse Execution Time (s)

Figure A.26. 4-in-1 Plot for Sparse with OllyDbg and Optimization Off, Levels 1-5

The regression equation is
Sparse Execution Time (s) = - 24950 + 17273 Level

Predictor Coef SE Coef T P
Constant -24950 2854 -8.74 0.000
Level 17273.4 860.6 20.07 0.000

S = 6085.30 R-Sq = 94.6% R-Sq(adj) = 94.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 14918497410 14918497410 402.87 0.000
Residual Error 23 851710254 37030881
Total 24 15770207664

96

Level

L
U
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

11

10

9

8

7

6

5

10.300210.315610.3438

5.4252

5.0032

Interval Plot of LU Execution Time (s) vs Level
90% CI for the Mean

Figure A.27. Mean Interval Plot of LU with OllyDbg and Optimization On Levels 1-5

Level

M
o
n
te
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

4.85

4.80

4.75

4.70

4.65

4.60

4.8092

4.5756

Interval Plot of Monte Execution Time (s) vs Level
90% CI for the Mean

Figure A.28. Mean Interval Plot of Monte with OllyDbg and Optimization On Levels 1-2

97

Level

S
O
R
E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

20.2902
19.818

20.6278

7.2314

4.7438

Interval Plot of SORExecution Time (s) vs Level
90% CI for the Mean

Figure A.29. Mean Interval Plot of SOR with OllyDbg and Optimization On Levels 1-5

Level

S
p
a
rs
e
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

50

40

30

20

10

0

47.881647.903447.8972

13.291

5.6058

Interval Plot of Sparse Execution Time (s) vs Level
90% CI for the Mean

Figure A.30. Mean Interval Plot of Sparse with OllyDbg and Optimization On Levels 1-5

98

Figure A.31. Regression Model for LU w/ OllyDbg and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

3.01.50.0-1.5-3.0

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

12.010.59.07.56.0

2

1

0

-1

Residual

F
r
e
q
u
e
n
c
y

2.01.51.00.50.0-0.5-1.0-1.5

4.8

3.6

2.4

1.2

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

2

1

0

-1

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for LU (Execution Time)

Figure A.32. 4-in-1 Plot for LU with OllyDbg and Optimization On, Levels 1-5

The regression equation is
LU (Execution Time) = 3.63 + 1.55 Level

Predictor Coef SE Coef T P
Constant 3.6323 0.5948 6.11 0.000
Level 1.5484 0.1793 8.63 0.000

S = 1.26819 R-Sq = 76.4% R-Sq(adj) = 75.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 119.88 119.88 74.54 0.000
Residual Error 23 36.99 1.61
Total 24 156.87

99

Figure A.33. Regression Model for Monte w/ OllyDbg and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

0.010.00-0.01

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

4.804.754.704.654.60

0.005

0.000

-0.005

-0.010

-0.015

Residual

F
r
e
q
u
e
n
c
y

0.
00
50

0.
00
25

0.
00
00

-0
.0
02
5

-0
.0
05
0

-0
.0
07
5

-0
.0
10
0

-0
.0
12
5

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

10987654321

0.005

0.000

-0.005

-0.010

-0.015

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Monte (Execution Time)

Figure A.34. 4-in-1 Plot for Monte with OllyDbg and Optimization On, Levels 1-5

The regression equation is
Monte (Execution Time) = 4.34 + 0.234 Level

Predictor Coef SE Coef T P
Constant 4.34200 0.00695 625.09 0.000
Level 0.233600 0.004393 53.17 0.000

S = 0.00694622 R-Sq = 99.7% R-Sq(adj) = 99.7%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.13642 0.13642 2827.41 0.000
Residual Error 8 0.00039 0.00005
Total 9 0.13681

Unusual Observations

 Monte
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 3 1.00 4.56300 4.57560 0.00311 -0.01260 -2.03R

R denotes an observation with a large standardized residual.

100

Figure A.35. Regression Model for SOR w/ OllyDbg and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

1050-5-10

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

252015105

6

3

0

-3

-6

Residual

F
r
e
q
u
e
n
c
y

86420-2-4-6

10.0

7.5

5.0

2.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

6

3

0

-3

-6

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for SOR (Execution Time)

Figure A.36. 4-in-1 Plot for SOR with OllyDbg and Optimization On, Levels 1-5

The regression equation is
SOR (Execution Time) = 1.44 + 4.37 Level

Predictor Coef SE Coef T P
Constant 1.438 1.720 0.84 0.412
Level 4.3679 0.5187 8.42 0.000

S = 3.66802 R-Sq = 75.5% R-Sq(adj) = 74.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 953.94 953.94 70.90 0.000
Residual Error 23 309.45 13.45
Total 24 1263.39

Unusual Observations

 SOR
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 13 3.00 22.050 14.542 0.734 7.508 2.09R

R denotes an observation with a large standardized residual.

101

Figure A.37. Regression Model for Sparse w/ OllyDbg and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

20100-10-20

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

5040302010

15

10

5

0

-5

Residual

F
r
e
q
u
e
n
c
y

151050-5

10.0

7.5

5.0

2.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

15

10

5

0

-5

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Sparse (Execution Time)

Figure A.38. 4-in-1 Plot for Sparse with OllyDbg and Optimization On, Levels 1-5

The regression equation is
Sparse (Execution Time) = - 3.23 + 11.9 Level

Predictor Coef SE Coef T P
Constant -3.233 4.281 -0.76 0.458
Level 11.916 1.291 9.23 0.000

S = 9.12728 R-Sq = 78.7% R-Sq(adj) = 77.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 7100.0 7100.0 85.23 0.000
Residual Error 23 1916.1 83.3
Total 24 9016.1

102

Level

21

11

10

9

8

7

6

5

4

3

2

21

FFT Opt-On Execution Time (s) FFT Opt-Off Execution Time (s)

90% CI for the Mean

Interval Plot of FFT Execution Time (s) for Opt-On and Opt-Off

Figure A.39. Mean Interval Plot of FFT with Optimization On and Off with OllyDbg,

Levels 1-2

Level

21

5.9

5.8

5.7

5.6

5.5

5.4

5.3

5.2

5.1

5.0

21

LU Opt-On Execution Time (s) LU Opt-Off Execution Time (s)

90% CI for the Mean

Interval Plot of LU Execution Time (s) for Opt-On and Opt-Off

Figure A.40. Mean Interval Plot of LU with Optimization On and Off with OllyDbg,

Levels 1-2

103

Level

21

7.5

7.0

6.5

6.0

5.5

5.0

21

SOR Opt-On Execution Time (s) SOR Opt-Off Execution Time (s)

90% CI for the Mean

Interval Plot of SOR Execution Time (s) for Opt-On and Opt-Off

Figure A.41. Mean Interval Plot of SOR with Optimization On and Off with OllyDbg,

Levels 1-2

Level

21

14

13

12

11

10

9

8

7

6

5

21

Sparse Opt-On Exec Time (s) Sparse Opt-Off Exec Time (s)

90% CI for the Mean

Interval Plot of Sparse Execution Time (s) for Opt-On and Opt-Off

Figure A.42. Mean Interval Plot of Sparse with Optimization On and Off with OllyDbg,

Levels 1-2

104

Table A.1. Ggrep with Optimization Off and IDAPro, Levels 1-5

Level

Test

Expression Mean St-Dev

90% Confidence

Interval

1 (baseline) Expression 1 18.394 0.008 [18.386, 18.402]

2 (hidden function in use) Expression 1 18.462 0.049 [18.416, 18.509]

3 (hidden function w/ 4

threads) Expression 1 18.36 0.131 [18.235, 18.485]

4 (hidden function w/ 8

threads)

Expression 1

18.394 0.087 [18.311, 18.477]

5 (hidden function w/ 12

threads)

Expression 1

18.378 0.086 [18.295, 18.46]

1 (baseline) Expression 2 5.3904 0.0005 [5.3899, 5.3909]

2 (hidden function in use) Expression 2 5.3874 0.0069 [5.3808, 5.3940]

3 (hidden function w/ 4

threads)

Expression 2

5.3686 0.0088 [5.3602, 5.3770]

4 (hidden function w/ 8

threads)

Expression 2

5.3752 0.0153 [5.3607, 5.3897]

5 (hidden function w/ 12

threads)

Expression 2

5.369 0.0082 [5.3612, 5.3768]

1 (baseline) Expression 3 219.1 0.12 [218.98, 219.21]

2 (hidden function in use) Expression 3 218.98 1.43 [217.62, 220.35]

3 (hidden function w/ 4

threads)

Expression 3

217.22 0.09 [217.13, 217.30]

4 (hidden function w/ 8

threads)

Expression 3

217.27 0.08 [217.20, 217.34]

5 (hidden function w/ 12

threads)

Expression 3

217.38 0.39 [217.01, 217.76]

105

Level

G
g
re
p
 E
x
p
 1
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

18.50

18.45

18.40

18.35

18.30

18.25

18.20

18.3776

18.3942

18.3598

18.4624

18.3942

Interval Plot of Ggrep Exp 1 Execution Time (s) vs Level
90% CI for the Mean

Figure A.43. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization Off

Level

G
g
re
p
 E
x
p

2
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

5.395

5.390

5.385

5.380

5.375

5.370

5.365

5.360

5.369

5.3752

5.3686

5.3874

5.3904

Interval Plot of Ggrep Exp 2 Execution Time (s) vs Level
90% CI for the Mean

Figure A.44. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization Off

106

Level

G
g
re
p
 E
x
p

3
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

220.5

220.0

219.5

219.0

218.5

218.0

217.5

217.0

217.383
217.27217.216

218.985
219.096

Interval Plot of Ggrep Exp 3 Execution Time (s) vs Level
90% CI for the Mean

Figure A.45. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization Off

Level

FF
T
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

40000

30000

20000

10000

0

39509.6

37011.3

15131.2

9.7562.762

Interval Plot of FFT Execution Time (s) vs Level
90% CI for the Mean

Figure A.46. Mean Interval Plot of FFT with IDAPro and Optimization Off

107

Level

L
U
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

1200

1000

800

600

400

200

0

1040.3

839.942

379.867

5.83445.4092

Interval Plot of LU Execution Time (s) vs Level
90% CI for the Mean

Figure A.47. Mean Interval Plot of LU with IDAPro and Optimization Off

Level

M
o
n
te
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

5000

4000

3000

2000

1000

0

4295.624312.51

1690

5.89084.583

Interval Plot of Monte Execution Time (s) vs Level
90% CI for the Mean

Figure A.48. Mean Interval Plot of Monte with IDAPro and Optimization Off

108

Level

S
O
R
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

30000

25000

20000

15000

10000

5000

0

26036.725997.4

14583.3

6.4564.744

Interval Plot of SOR Execution Time (s) vs Level
90% CI for the Mean

Figure A.49. Mean Interval Plot of SOR with IDAPro and Optimization Off

Level

S
p
a
rs
e
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

80000

70000

60000

50000

40000

30000

20000

10000

0

66613.5

59287.3

25537.9

13.55.6128

Interval Plot of Sparse Execution Time (s) vs Level
90% CI for the Mean

Figure A.50. Mean Interval Plot of Sparse with IDAPro and Optimization Off

109

Level

FF
T
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

10

9

8

7

6

5

4

3

2

9.756

2.762

Interval Plot of FFT Execution Time (s) vs Level
90% CI for the Mean

Figure A.51. Mean Interval Plot of FFT with IDAPro and Optimization Off, Levels 1 and

2

Level

L
U
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

5.9

5.8

5.7

5.6

5.5

5.4

5.8344

5.4092

Interval Plot of LU Execution Time (s) vs Level
90% CI for the Mean

Figure A.52. Mean Interval Plot of LU with IDAPro and Optimization Off, Levels 1 and

2

110

Level

M
o
n
te
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

6.00

5.75

5.50

5.25

5.00

4.75

4.50

5.8908

4.583

Interval Plot of Monte Execution Time (s) vs Level
90% CI for the Mean

Figure A.53. Mean Interval Plot of Monte with IDAPro and Optimization Off, Levels 1

and 2

Level

S
O
R
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

6.5

6.0

5.5

5.0

4.5

6.456

4.744

Interval Plot of SOR Execution Time (s) vs Level
90% CI for the Mean

Figure A.54. Mean Interval Plot of SOR with IDAPro and Optimization Off, Levels 1 and

2

111

Level

S
p
a
rs
e
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

14

13

12

11

10

9

8

7

6

5

13.5

5.6128

Interval Plot of Sparse Execution Time (s) vs Level
90% CI for the Mean

Figure A.55. Mean Interval Plot of Sparse with IDAPro and Optimization Off, Levels 1

and 2

Figure A.56. Regression Model for Ggrep Expression 1 w/ IDAPro and Optimization Off,

Levels 1-5

The regression equation is
Ggrep Exp 1 (Execution Time) = 18.4 - 0.0101 Level

Predictor Coef SE Coef T P
Constant 18.4281 0.0396 465.42 0.000
Level -0.01014 0.01194 -0.85 0.404

S = 0.0844158 R-Sq = 3.0% R-Sq(adj) = 0.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.005141 0.005141 0.72 0.404
Residual Error 23 0.163899 0.007126
Total 24 0.169040

Unusual Observations

 Ggrep Exp
 1
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 12 3.00 18.5880 18.3976 0.0169 0.1904 2.30R

R denotes an observation with a large standardized residual.

112

Residual

P
e
r
c
e
n
t

0.20.10.0-0.1-0.2

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

18.4218.4118.4018.3918.38

0.2

0.1

0.0

-0.1

Residual

F
r
e
q
u
e
n
c
y

0.200.150.100.050.00-0.05-0.10

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.2

0.1

0.0

-0.1

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 1 (Execution Time)

Figure A.57. 4-in-1 Plot for Ggrep Expression 1 with IDAPro and Optimization Off,

Levels 1-5

Figure A.58. Regression Model for Ggrep Expression 2 w/ IDAPro and Optimization Off,

Levels 1-5

The regression equation is
Ggrep Exp 2 (Execution Time) = 5.39 - 0.00550 Level

Predictor Coef SE Coef T P
Constant 5.39462 0.00468 1153.62 0.000
Level -0.005500 0.001410 -3.90 0.001

S = 0.00996982 R-Sq = 39.8% R-Sq(adj) = 37.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.0015125 0.0015125 15.22 0.001
Residual Error 23 0.0022861 0.0000994
Total 24 0.0037986

113

Residual

P
e
r
c
e
n
t

0.020.010.00-0.01-0.02

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

5.3905.3855.3805.3755.370

0.02

0.01

0.00

-0.01

-0.02

Residual

F
r
e
q
u
e
n
c
y

0.020.010.00-0.01-0.02

6.0

4.5

3.0

1.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.02

0.01

0.00

-0.01

-0.02

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 2 (Execution Time)

Figure A.59. 4-in-1 Plot for Ggrep Expression 2 with IDAPro and Optimization Off,

Levels 1-5

Figure A.60. Regression Model for Ggrep Expression 3 w/ IDAPro and Optimization Off,

Levels 1-5

The regression equation is
Ggrep Exp 3 (Execution Time) = 220 - 0.514 Level

Predictor Coef SE Coef T P
Constant 219.532 0.368 596.60 0.000
Level -0.5141 0.1109 -4.63 0.000

S = 0.784526 R-Sq = 48.3% R-Sq(adj) = 46.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 13.215 13.215 21.47 0.000
Residual Error 23 14.156 0.615
Total 24 27.371

Unusual Observations

 Ggrep Exp
 3
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 8 2.00 221.531 218.504 0.192 3.027 3.98R

R denotes an observation with a large standardized residual.

114

Residual

P
e
r
c
e
n
t

20-2

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

219.0218.5218.0217.5217.0

3

2

1

0

-1

Residual

F
r
e
q
u
e
n
c
y

3210-1

12

9

6

3

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

3

2

1

0

-1

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 3 (Execution Time)

Figure A.61. 4-in-1 Plot for Ggrep Expression 3 with IDAPro and Optimization Off,

Levels 1-5

Table A.2. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 1 with Optimization Off and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES NO NO NO

2 (hidden function in use) X X YES NO YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table A.3. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 2 with Optimization Off and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X NO YES YES YES

2 (hidden function in use) X X YES NO YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

115

Table A.4. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 3 with Optimization Off and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X NO YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table A.5. SciMark2 with Optimization Off and IDAPro, Levels 1-5

Level Function Mean St-Dev

90% Confidence

Interval

1 (baseline) FFT 2.762 0.0067 [2.7556, 2.7684]

2 (hidden function in use) FFT 9.756 0.0082 [9.7482, 9.7638]

3 (hidden function w/ 4 threads) FFT 15131 2568 [12683, 17580]

4 (hidden function w/ 8 threads) FFT 37011 2564 [34567, 39456]

5 (hidden function w/ 12 threads) FFT 39510 3081 [36572, 42447]

1 (baseline) LU 5.4092 0.0072 [5.4024, 5.410]

2 (hidden function in use) LU 5.8344 0.0088 [5.8260, 5.8428]

3 (hidden function w/ 4 threads) LU 379.87 87.71 [296.24, 463.49]

4 (hidden function w/ 8 threads) LU 839.94 142.5 [704.08, 975.80]

5 (hidden function w/ 12 threads) LU 1040.3 195.2 [854.2, 1226.4]

1 (baseline) Monte 4.583 0.0435 [4.515, 5.6245]

2 (hidden function in use) Monte 5.8908 0.0004 [5.8904, 5.8910]

3 (hidden function w/ 4 threads) Monte 1690 305.8 [1398.4, 1981.6]

4 (hidden function w/ 8 threads) Monte 4312.5 85.6 [4230.9, 4394.1]

5 (hidden function w/ 12 threads) Monte 4295.6 67.1 [4231.6, 4359.6]

1 (baseline) SOR 4.744 0.0082 [4.7362, 4.7518]

2 (hidden function in use) SOR 6.456 0.0125 [6.4440, 6.4680]

3 (hidden function w/ 4 threads) SOR 14583 737 [13881, 15286]

4 (hidden function w/ 8 threads) SOR 25997 706 [25324, 26671]

5 (hidden function w/ 12 threads) SOR 26037 400 [25656, 26418]

1 (baseline) Sparse 5.6128 0.0129 [5.6005, 5.6251]

2 (hidden function in use) Sparse 13.5 0.011 [13.489, 13.511]

3 (hidden function w/ 4 threads) Sparse 25538 4428 [21317, 29759]

4 (hidden function w/ 8 threads) Sparse 59287 6330 [53252, 65323]

5 (hidden function w/ 12 threads) Sparse 66613 4345 [62471, 70756]

116

Figure A.62. Regression Model for FFT w/ IDAPro and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

1000050000-5000-10000

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

400003000020000100000

10000

5000

0

-5000

Residual

F
r
e
q
u
e
n
c
y

80006000400020000-2000-4000-6000

6.0

4.5

3.0

1.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

10000

5000

0

-5000

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for FFT (Execution Time)

Figure A.63. 4-in-1 Plot for FFT with IDAPro and Optimization Off, Levels 1-5

The regression equation is
FFT (Execution Time) = - 16472 + 11602 Level

Predictor Coef SE Coef T P
Constant -16472 2692 -6.12 0.000
Level 11601.5 811.6 14.29 0.000

S = 5738.77 R-Sq = 89.9% R-Sq(adj) = 89.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 6729778258 6729778258 204.34 0.000
Residual Error 23 757470477 32933499
Total 24 7487248735

117

Figure A.64. Regression Model for LU w/ IDAPro and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

4002000-200-400

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

10007505002500

300

200

100

0

-100

Residual

F
r
e
q
u
e
n
c
y

3002001000-100

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

300

200

100

0

-100

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for LU (Execution Time)

Figure A.65. 4-in-1 Plot for LU with IDAPro and Optimization Off, Levels 1-5

The regression equation is
LU (Execution Time) = - 417 + 290 Level

Predictor Coef SE Coef T P
Constant -416.89 72.50 -5.75 0.000
Level 290.39 21.86 13.28 0.000

S = 154.576 R-Sq = 88.5% R-Sq(adj) = 88.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 4216262 4216262 176.46 0.000
Residual Error 23 549560 23894
Total 24 4765822

Unusual Observations

 LU
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 21 5.00 1342.9 1035.0 53.5 307.9 2.12R

R denotes an observation with a large standardized residual.

118

Figure A.66. Regression Model for Monte w/ IDAPro and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

200010000-1000-2000

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

40003000200010000

1000

500

0

-500

-1000

Residual

F
r
e
q
u
e
n
c
y

10007505002500-250-500-750

4.8

3.6

2.4

1.2

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

1000

500

0

-500

-1000

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Monte (Execution Time)

Figure A.67. 4-in-1 Plot for Monte with IDAPro and Optimization Off, Levels 1-5

The regression equation is
Monte (Execution Time) = - 1805 + 1289 Level

Predictor Coef SE Coef T P
Constant -1804.9 318.8 -5.66 0.000
Level 1288.87 96.13 13.41 0.000

S = 679.708 R-Sq = 88.7% R-Sq(adj) = 88.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 83059113 83059113 179.78 0.000
Residual Error 23 10626056 462002
Total 24 93685169

119

Figure A.68. Regression Model for SOR w/ IDAPro and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

1000050000-5000-10000

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

3000020000100000

5000

2500

0

-2500

-5000

Residual

F
r
e
q
u
e
n
c
y

600030000-3000-6000

4.8

3.6

2.4

1.2

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

5000

2500

0

-2500

-5000

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for SOR (Execution Time)

Figure A.69. 4-in-1 Plot for SOR with IDAPro and Optimization Off, Levels 1-5

The regression equation is
SOR (Execution Time) = - 10091 + 7805 Level

Predictor Coef SE Coef T P
Constant -10091 1833 -5.50 0.000
Level 7805.5 552.8 14.12 0.000

S = 3908.69 R-Sq = 89.7% R-Sq(adj) = 89.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 3046285658 3046285658 199.39 0.000
Residual Error 23 351390457 15277846
Total 24 3397676115

120

Figure A.70. Regression Model for Sparse w/ IDAPro and Optimization Off, Levels 1-5

Residual

P
e
r
c
e
n
t

20000100000-10000-20000

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

800006000040000200000

20000

10000

0

-10000

Residual

F
r
e
q
u
e
n
c
y

150001000050000-5000-10000

6.0

4.5

3.0

1.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

20000

10000

0

-10000

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Sparse (Execution Time)

Figure A.71. 4-in-1 Plot for Sparse with IDAPro and Optimization Off, Levels 1-5

Table A.6. Mean of Differences (Is there a statistically significant difference present?)

using FFT with Optimization Off and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X YES YES

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

The regression equation is
Sparse (Execution Time) = - 27455 + 19249 Level

Predictor Coef SE Coef T P
Constant -27455 4231 -6.49 0.000
Level 19249 1276 15.09 0.000

S = 9019.99 R-Sq = 90.8% R-Sq(adj) = 90.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 18526101803 18526101803 227.70 0.000
Residual Error 23 1871283308 81360144
Total 24 20397385111

121

Table A.7. Mean of Differences (Is there a statistically significant difference present?)

using LU with Optimization Off and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X YES YES

4 (hidden function w/ 8 threads) X X X X YES

5 (hidden function w/ 12 threads) X X X X X

Table A.8. Mean of Differences (Is there a statistically significant difference present?)

using Monte with Optimization Off and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X YES YES

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table A.9. Mean of Differences (Is there a statistically significant difference present?)

using SOR with Optimization Off and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X YES YES

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table A.10. Mean of Differences (Is there a statistically significant difference present?)

using Sparse with Optimization Off and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X YES YES

4 (hidden function w/ 8 threads) X X X X YES

5 (hidden function w/ 12 threads) X X X X X

122

Table A.11. Ggrep with Optimization On and IDAPro, Levels 1-5

Level

Ggrep

Expression Mean St-Dev

90% Confidence

Interval

1 (baseline) Expression 1 16.159 0.112 [16.052, 16.265]

2 (hidden function in use) Expression 1 16.096 0.011 [16.086, 16.107]

3 (hidden function w/ 4 threads) Expression 1 16.115 0.026 [16.090, 16.139]

4 (hidden function w/ 8 threads) Expression 1 16.109 0.007 [16.102, 16.115]

5 (hidden function w/ 12 threads) Expression 1 16.217 0.151 [16.073, 16.361]

1 (baseline) Expression 2 4.7282 0.0138 [4.7150, 4.7414]

2 (hidden function in use) Expression 2 4.744 0.0082 [4.7362, 4.7518]

3 (hidden function w/ 4 threads) Expression 2 4.753 0.0067 [4.7466, 4.7594]

4 (hidden function w/ 8 threads) Expression 2 4.75 0 [4.750, 4.750]

5 (hidden function w/ 12 threads) Expression 2 4.7532 0.0072 [4.7464, 4.76]

1 (baseline) Expression 3 193.35 0.23 [193.13, 193.57]

2 (hidden function in use) Expression 3 194.46 0.04 [194.42, 194.50]

3 (hidden function w/ 4 threads) Expression 3 194.59 0.09 [194.51, 194.67]

4 (hidden function w/ 8 threads) Expression 3 194.84 0.37 [194.50, 195.19]

5 (hidden function w/ 12 threads) Expression 3 196.1 3.56 [192.71, 199.5]

Level

G
g
re
p
 E
x
p
 1
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

16.40

16.35

16.30

16.25

16.20

16.15

16.10

16.05

16.2172

16.1086
16.1148

16.0962

16.1588

Interval Plot of Ggrep Exp 1 Execution Time (s) vs Level
90% CI for the Mean

Figure A.72. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization On

123

Level

G
g
re
p
 E
x
p

2
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

4.76

4.75

4.74

4.73

4.72

4.71

4.7532

4.75

4.753

4.744

4.7282

Interval Plot of Ggrep Exp 2 Execution Time (s) vs Level
90% CI for the Mean

Figure A.73. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization On

Level

G
g
re
p
 E
x
p

3
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

200

199

198

197

196

195

194

193

192

196.105

194.845
194.591

194.459

193.347

Interval Plot of Ggrep Exp 3 Execution Time (s) vs Level
90% CI for the Mean

Figure A.74. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization On

124

Level

FF
T
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

90

80

70

60

50

40

30

20

10

0

84.339283.47683.4742

11.5128

4.832

Interval Plot of FFT Execution Time (s) vs Level
90% CI for the Mean

Figure A.75. Mean Interval Plot of FFT w/ IDAPro and Optimization On

Level

L
U
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

14

13

12

11

10

9

8

7

6

5

12.514
12.71912.8474

6.5406

6.0358

Interval Plot of LU Execution Time (s) vs Level
90% CI for the Mean

Figure A.76. Mean Interval Plot of LU w/ IDAPro and Optimization On

125

Level

S
O
R
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

25

20

15

10

5

20.634420.6158
21.5504

9.0718

6.1266

Interval Plot of SOR Execution Time (s) vs Level
90% CI for the Mean

Figure A.77. Mean Interval Plot of SOR w/ IDAPro and Optimization On

Level

S
p
a
rs
e
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

54321

70

60

50

40

30

20

10

0

57.5424
59.743460.8402

16.9866

7.0142

Interval Plot of Sparse Execution Time (s) vs Level
90% CI for the Mean

Figure A.78. Mean Interval Plot of Sparse w/ IDAPro and Optimization On

126

Level

FF
T
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

12

11

10

9

8

7

6

5

4

11.5128

4.832

Interval Plot of FFT Execution Time (s) vs Level
90% CI for the Mean

Figure A.79. Mean Interval Plot of FFT w/ IDAPro and Optimization On, Levels 1 and 2

Level

L
U
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

7.25

7.00

6.75

6.50

6.25

6.00

5.75

5.50

6.5406

6.0358

Interval Plot of LU Execution Time (s) vs Level
90% CI for the Mean

Figure A.80. Mean Interval Plot of LU w/ IDAPro and Optimization On, Levels 1 and 2

127

Level

M
o
n
te
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

5.6

5.4

5.2

5.0

4.8

4.6

5.3706

4.7824

Interval Plot of Monte Execution Time (s) vs Level
90% CI for the Mean

Figure A.81. Mean Interval Plot of Monte w/ IDAPro and Optimization On, Levels 1 and

2

Level

S
O
R
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

10

9

8

7

6

9.0718

6.1266

Interval Plot of SOR Execution Time (s) vs Level
90% CI for the Mean

Figure A.82. Mean Interval Plot of SOR w/ IDAPro and Optimization On, Levels 1 and 2

128

Level

S
p
a
rs
e
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
)

21

17.5

15.0

12.5

10.0

7.5

5.0

16.9866

7.0142

Interval Plot of Sparse Execution Time (s) vs Level
90% CI for the Mean

Figure A.83. Mean Interval Plot of Sparse w/ IDAPro and Optimization On, Levels 1 and

2

Figure A.84. Regression Model for Ggrep Expression 1 w/ IDAPro and Optimization On,

Levels 1-5

The regression equation is
Ggrep Exp 1 (Execution Time) = 16.1 + 0.0129 Level

Predictor Coef SE Coef T P
Constant 16.1004 0.0421 382.51 0.000
Level 0.01292 0.01269 1.02 0.319

S = 0.0897393 R-Sq = 4.3% R-Sq(adj) = 0.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.008346 0.008346 1.04 0.319
Residual Error 23 0.185222 0.008053
Total 24 0.193569

Unusual Observations
 Ggrep Exp
 1
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 2 1.00 16.3310 16.1133 0.0311 0.2177 2.59R
 22 5.00 16.4560 16.1650 0.0311 0.2910 3.46R

R denotes an observation with a large standardized residual.

129

Residual

P
e
r
c
e
n
t

0.20.0-0.2

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

16.1616.1516.1416.1316.12

0.3

0.2

0.1

0.0

-0.1

Residual

F
r
e
q
u
e
n
c
y

0.300.250.200.150.100.050.00-0.05

16

12

8

4

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.3

0.2

0.1

0.0

-0.1

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 1 (Execution Time)

Figure A.85. 4-in-1 Plot for Ggrep Expression 1 with IDAPro and Optimization On,

Levels 1-5

Figure A.86. Regression Model for Ggrep Expression 2 w/ IDAPro and Optimization On,

Levels 1-5

The regression equation is
Ggrep Exp 2 (Execution Time) = 4.73 + 0.00560 Level

Predictor Coef SE Coef T P
Constant 4.72888 0.00441 1071.72 0.000
Level 0.005600 0.001330 4.21 0.000

S = 0.00940731 R-Sq = 43.5% R-Sq(adj) = 41.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.0015680 0.0015680 17.72 0.000
Residual Error 23 0.0020354 0.0000885
Total 24 0.0036034

Unusual Observations

 Ggrep Exp
 2
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 11 3.00 4.76500 4.74568 0.00188 0.01932 2.10R

R denotes an observation with a large standardized residual.

130

Residual

P
e
r
c
e
n
t

0.020.010.00-0.01-0.02

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

4.7554.7504.7454.7404.735

0.02

0.01

0.00

-0.01

-0.02

Residual

F
r
e
q
u
e
n
c
y

0.
02
0

0.
01
5

0.
01
0

0.
00
5

0.
00
0

-0
.0
05

-0
.0
10

-0
.0
15

6.0

4.5

3.0

1.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

0.02

0.01

0.00

-0.01

-0.02

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 2 (Execution Time)

Figure A.87. 4-in-1 Plot for Ggrep Expression 2 with IDAPro and Optimization On,

Levels 1-5

Figure A.88. Regression Model for Ggrep Expression 3 w/ IDAPro and Optimization On,

Levels 1-5

The regression equation is
Ggrep Exp 3 (Execution Time) = 193 + 0.590 Level

Predictor Coef SE Coef T P
Constant 192.899 0.716 269.32 0.000
Level 0.5901 0.2160 2.73 0.012

S = 1.52702 R-Sq = 24.5% R-Sq(adj) = 21.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 17.409 17.409 7.47 0.012
Residual Error 23 53.631 2.332
Total 24 71.040

Unusual Observations

 Ggrep Exp
 3
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 21 5.00 202.469 195.849 0.529 6.620 4.62R

R denotes an observation with a large standardized residual.

131

Residual

P
e
r
c
e
n
t

840-4

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

195.5195.0194.5194.0193.5

7.5

5.0

2.5

0.0

Residual

F
r
e
q
u
e
n
c
y

6420-2

16

12

8

4

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

7.5

5.0

2.5

0.0

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Ggrep Exp 3 (Execution Time)

Figure A.89. 4-in-1 Plot for Ggrep Expression 3 with IDAPro and Optimization On,

Levels 1-5

Table A.12. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 1 with Optimization On and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X NO NO NO NO

2 (hidden function in use) X X NO NO NO

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table A.13. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 2 with Optimization On and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X NO YES YES YES

2 (hidden function in use) X X YES NO YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

132

Table A.14. Mean of Differences (Is there a statistically significant difference present?)

using Ggrep Expression 3 with Optimization On and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES NO

2 (hidden function in use) X X YES YES NO

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table A.15. SciMark2 with Optimization On and IDAPro, Levels 1-5

Level Function Mean St-Dev

90% Confidence

Interval

1 (baseline) FFT 4.832 0.2364 [4.6066, 5.0574]

2 (hidden function in use) FFT 11.513 0.323 [11.205, 11.821]

3 (hidden function w/ 4 threads) FFT 83.474 1.853 [81.708, 85.241]

4 (hidden function w/ 8 threads) FFT 83.476 1.405 [82.136, 84.816]

5 (hidden function w/ 12 threads) FFT 84.339 3.423 [81.076, 87.602]

1 (baseline) LU 6.0358 0.6595 [5.4070, 6.6646]

2 (hidden function in use) LU 6.5406 0.5956 [5.9728, 71.084]

3 (hidden function w/ 4 threads) LU 12.847 0.646 [12.231, 13.464]

4 (hidden function w/ 8 threads) LU 12.719 1.052 [11.716, 13.722]

5 (hidden function w/ 12 threads) LU 12.514 0.408 [12.125, 12.903]

1 (baseline) Monte 4.7824 0.0539 [4.7310, 4.8338]

2 (hidden function in use) Monte 5.3706 0.2997 [5.0849, 5.6563]

3 (hidden function w/ 4 threads) Monte N/A N/A N/A

4 (hidden function w/ 8 threads) Monte N/A N/A N/A

5 (hidden function w/ 12 threads) Monte N/A N/A N/A

1 (baseline) SOR 6.1266 0.3651 [5.7785, 6.4747]

2 (hidden function in use) SOR 9.0718 0.4013 [8.6892, 9.4544]

3 (hidden function w/ 4 threads) SOR 21.55 1.762 [19.871, 23.230]

4 (hidden function w/ 8 threads) SOR 20.616 1.518 [19.168, 22.063]

5 (hidden function w/ 12 threads) SOR 20.634 2.437 [18.311, 22.958]

1 (baseline) Sparse 7.0142 0.9644 [6.0947, 7.9337]

2 (hidden function in use) Sparse 16.987 1.222 [15.822, 18.151]

3 (hidden function w/ 4 threads) Sparse 60.84 4.283 [56.757, 64.923]

4 (hidden function w/ 8 threads) Sparse 59.743 2.2 [57.646, 61.841]

5 (hidden function w/ 12 threads) Sparse 57.542 0.592 [56.978, 58.107]

133

Figure A.90. Regression Model for FFT w/ IDAPro and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

50250-25-50

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

1007550250

20

0

-20

Residual

F
r
e
q
u
e
n
c
y

3020100-10-20

6.0

4.5

3.0

1.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

20

0

-20

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for FFT (Execution Time)

Figure A.91. 4-in-1 Plot for FFT with IDAPro and Optimization On, Levels 1-5

The regression equation is
FFT (Execution Time) = - 15.8 + 23.1 Level

Predictor Coef SE Coef T P
Constant -15.766 8.633 -1.83 0.081
Level 23.098 2.603 8.87 0.000

S = 18.4056 R-Sq = 77.4% R-Sq(adj) = 76.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 26675 26675 78.74 0.000
Residual Error 23 7792 339
Total 24 34467

134

Figure A.92. Regression Model for LU w/ IDAPro and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

5.02.50.0-2.5-5.0

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

14121086

4

2

0

-2

Residual

F
r
e
q
u
e
n
c
y

43210-1-2

6.0

4.5

3.0

1.5

0.0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

4

2

0

-2

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for LU (Execution Time)

Figure A.93. 4-in-1 Plot for LU with IDAPro and Optimization On, Levels 1-5

The regression equation is
LU (Execution Time) = 4.39 + 1.91 Level

Predictor Coef SE Coef T P
Constant 4.3909 0.8410 5.22 0.000
Level 1.9135 0.2536 7.55 0.000

S = 1.79293 R-Sq = 71.2% R-Sq(adj) = 70.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 183.07 183.07 56.95 0.000
Residual Error 23 73.94 3.21
Total 24 257.01

Unusual Observations

 LU
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 12 3.00 13.837 10.131 0.359 3.706 2.11R

R denotes an observation with a large standardized residual.

135

Figure A.94. Regression Model for Monte w/ IDAPro and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

0.500.250.00-0.25-0.50

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

5.405.255.104.954.80

0.4

0.2

0.0

-0.2

-0.4

Residual

F
r
e
q
u
e
n
c
y

0.40.30.20.10.0-0.1-0.2-0.3

4.8

3.6

2.4

1.2

0.0

Observation Order

R
e
s
id
u
a
l

10987654321

0.4

0.2

0.0

-0.2

-0.4

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Monte (Execution Time)

Figure A.95. 4-in-1 Plot for Monte with IDAPro and Optimization On, Levels 1-5

The regression equation is
Monte (Execution Time) = 4.19 + 0.588 Level

Predictor Coef SE Coef T P
Constant 4.1942 0.2153 19.48 0.000
Level 0.5882 0.1362 4.32 0.003

S = 0.215323 R-Sq = 70.0% R-Sq(adj) = 66.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.86495 0.86495 18.66 0.003
Residual Error 8 0.37091 0.04636
Total 9 1.23586

Unusual Observations

 Monte
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 8 2.00 5.8140 5.3706 0.0963 0.4434 2.30R

R denotes an observation with a large standardized residual.

136

Figure A.96. Regression Model for SOR w/ IDAPro and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

1050-5-10

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

25201510

10

5

0

-5

Residual

F
r
e
q
u
e
n
c
y

86420-2-4-6

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

10

5

0

-5

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for SOR Execution Time (s)

Figure A.97. 4-in-1 Plot for SOR with IDAPro and Optimization On, Levels 1-5

The regression equation is
SOR Execution Time (s) = 3.43 + 4.06 Level

Predictor Coef SE Coef T P
Constant 3.432 1.737 1.98 0.060
Level 4.0560 0.5237 7.74 0.000

S = 3.70313 R-Sq = 72.3% R-Sq(adj) = 71.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 822.54 822.54 59.98 0.000
Residual Error 23 315.40 13.71
Total 24 1137.94

Unusual Observations

 SOR
 Execution
Obs Level Time (s) Fit SE Fit Residual St Resid
 13 3.00 23.545 15.600 0.741 7.945 2.19R

R denotes an observation with a large standardized residual.

137

Figure A.98. Regression Model for Sparse w/ IDAPro and Optimization On, Levels 1-5

Residual

P
e
r
c
e
n
t

30150-15-30

99

90

50

10

1

Fitted Value

R
e
s
id
u
a
l

604020

30

20

10

0

-10

Residual

F
r
e
q
u
e
n
c
y

2520151050-5-10

8

6

4

2

0

Observation Order

R
e
s
id
u
a
l

24222018161412108642

30

20

10

0

-10

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Sparse (Execution Time)

Figure A.99. 4-in-1 Plot for Sparse with IDAPro and Optimization On, Levels 1-5

The regression equation is
Sparse (Execution Time) = - 2.72 + 14.4 Level

Predictor Coef SE Coef T P
Constant -2.719 5.791 -0.47 0.643
Level 14.381 1.746 8.24 0.000

S = 12.3462 R-Sq = 74.7% R-Sq(adj) = 73.6%

Analysis of Variance

Source DF SS MS F P
Regression 1 10341 10341 67.84 0.000
Residual Error 23 3506 152
Total 24 13847

Unusual Observations

 Sparse
 (Execution
Obs Level Time) Fit SE Fit Residual St Resid
 13 3.00 67.36 40.43 2.47 26.93 2.23R

R denotes an observation with a large standardized residual.

138

Table A.16. Mean of Differences (Is there a statistically significant difference present?)

using FFT with Optimization On and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table A.17. Mean of Differences (Is there a statistically significant difference present?)

using LU with Optimization On and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X NO YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

Table A.18. Mean of Differences (Is there a statistically significant difference present?)

using Monte with Optimization On and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES N/A N/A N/A

2 (hidden function in use) X X N/A N/A N/A

3 (hidden function w/ 4 threads) X X X N/A N/A

4 (hidden function w/ 8 threads) X X X X N/A

5 (hidden function w/ 12 threads) X X X X X

Table A.19. Mean of Differences (Is there a statistically significant difference present?)

using SOR with Optimization On and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X NO NO

4 (hidden function w/ 8 threads) X X X X NO

5 (hidden function w/ 12 threads) X X X X X

139

Table A.20. Mean of Differences (Is there a statistically significant difference present?)

using Sparse with Optimization On and IDAPro

Level Level 1 Level 2 Level 3 Level 4 Level 5

1 (baseline) X YES YES YES YES

2 (hidden function in use) X X YES YES YES

3 (hidden function w/ 4 threads) X X X YES NO

4 (hidden function w/ 8 threads) X X X X YES

5 (hidden function w/ 12 threads) X X X X X

Table A.21. Mean of Differences for Ggrep Expressions 1-3 with IDAPro, Optimization

Off vs Optimization On (Is there a statistically significant difference between the same

levels when optimization is on and off?)

 Optimization-Off versus Optimization-On

 Level 1 Level 2 Level 3 Level 4 Level 5

Ggrep

Expression 1 Yes Yes Yes Yes Yes

Ggrep

Expression 2 Yes Yes Yes Yes Yes

Ggrep

Expression 3 Yes Yes Yes Yes Yes

Table A.22. Mean of Differences for SciMark2 with IDAPro, Optimization Off vs

Optimization On (Is there a statistically significant difference between the same levels

when optimization is on and off?)

 Optimization-Off versus Optimization-On

Function Level 1 Level 2 Level 3 Level 4 Level 5

FFT Yes Yes Yes Yes Yes

LU Yes Yes Yes Yes Yes

Monte Yes Yes N/A N/A N/A

SOR Yes Yes Yes Yes Yes

Sparse Yes Yes Yes Yes Yes

140

Level

54321

18.5

18.0

17.5

17.0

16.5

16.0

54321

Ggrep Exp 1 Opt-On Ggrep Exp 1 Opt-Off

90% CI for the Mean

Interval Plot of Ggrep Exp 1 Execution Time (s) Opt-On and Opt-Off

Figure A.100. Mean Interval Plot of Ggrep Expression 1 w/ IDAPro and Optimization On

versus Off

Level

54321

5.4

5.3

5.2

5.1

5.0

4.9

4.8

4.7

54321

Ggrep Exp 2 Opt-On Ggrep Exp 2 Opt-Off

90% CI for the Mean

Interval Plot of Ggrep Exp 2 Execution Time (s) Opt-On and Opt-Off

Figure A.101. Mean Interval Plot of Ggrep Expression 2 w/ IDAPro and Optimization On

versus Off

141

Level

54321

220

215

210

205

200

195

190

54321

Ggrep Exp 3 Opt-On Ggrep Exp 3 Opt-Off

90% CI for the Mean

Interval Plot of Ggrep Exp 3 Execution Time (s) Opt-On and Opt-Off

Figure A.102. Mean Interval Plot of Ggrep Expression 3 w/ IDAPro and Optimization On

versus Off

Level

21

12

10

8

6

4

2

21

FFT Execution Time (s), Opt-On FFT Execution Time (s), Opt-Off

90% CI for the Mean

Interval Plot of FFT Execution Time (s) Opt-On and Opt-Off

Figure A.103. Mean Interval Plot of FFT w/ IDAPro and Optimization On versus Off,

Levels 1 and 2

142

Level

21

7.25

7.00

6.75

6.50

6.25

6.00

5.75

5.50

21

LU Execution Time (s), Opt-On LU Execution Time (s), Opt-Off

90% CI for the Mean

Interval Plot of LU Execution Time (s) Opt-On and Opt-Off

Figure A.104. Mean Interval Plot of LU w/ IDAPro and Optimization On versus Off,

Levels 1 and 2

Level

21

6.00

5.75

5.50

5.25

5.00

4.75

4.50

21

Monte Exec Time (s), Opt-On Monte Exec Time (s), Opt-Off

Interval Plot of Monte Exec Time , Monte Exec Time vs Level
90% CI for the Mean

Figure A.105. Mean Interval Plot of Monte w/ IDAPro and Optimization On versus Off,

Levels 1 and 2

143

Level

21

10

9

8

7

6

5

21

SOR Execution Time (s), Opt-On SOR Execution Time (s), Opt-Off

90% CI for the Mean

Interval Plot of SOR Execution Time (s) Opt-On and Opt-Off

Figure A.106. Mean Interval Plot of SOR w/ IDAPro and Optimization On versus Off,

Levels 1 and 2

Level

21

17.5

15.0

12.5

10.0

7.5

5.0

21

Sparse Execution Time (s), Opt- Sparse Exec Time (s), Opt-Off

90% CI for the Mean

Interval Plot of Sparse Execution Time (s) Opt-On and Opt-Off

Figure A.107. Mean Interval Plot of Sparse w/ IDAPro and Optimization On versus Off,

Levels 1 and 2

144

Table A.23. Cost per thread Analysis for SciMark2 OllyDbg and IDAPro with

Optimization Off

Level

Num

Threads Function Mean

Calls to

Hidden

Function

Time per

Call

(Mean/Call)

Time per

Call/Num

Threads

3 4 FFT 15456 444542000 3.47684E-05 8.6921E-06

4 8 FFT 26159 444542000 5.88448E-05 7.3556E-06

5 12 FFT 38102 444542000 8.57107E-05 7.1426E-06

3 4 LU 376.12 10700000 3.51514E-05 8.7879E-06

4 8 LU 633.3 10700000 5.91869E-05 7.3984E-06

5 12 LU 918.49 10700000 8.58402E-05 7.1533E-06

3 4 Monte 1748.8 50005000 3.49725E-05 8.7431E-06

4 8 Monte 2951.6 50005000 5.90261E-05 7.3783E-06

5 12 Monte 4324.3 50005000 8.64774E-05 7.2064E-06

3 4 SOR 12969 301974751 4.29473E-05 1.0737E-05

4 8 SOR 25460 301974751 8.43117E-05 1.0539E-05

5 12 SOR 36131 301974751 0.000119649 9.9708E-06

3 4 Sparse 25909 748500000 3.46146E-05 8.6536E-06

4 8 Sparse 44086 748500000 5.88991E-05 7.3624E-06

5 12 Sparse 64337 748500000 8.59546E-05 7.1629E-06

3 4 FFT 15131 444542000 3.40373E-05 2.8364E-06

4 8 FFT 37011 444542000 8.32565E-05 6.938E-06

5 12 FFT 39510 444542000 8.8878E-05 7.4065E-06

3 4 LU 379.87 10700000 3.55019E-05 2.9585E-06

4 8 LU 839.94 10700000 7.84991E-05 6.5416E-06

5 12 LU 1040.3 10700000 9.72243E-05 8.102E-06

3 4 Monte 1690 50005000 3.37966E-05 2.8164E-06

4 8 Monte 4312.5 50005000 8.62414E-05 7.1868E-06

5 12 Monte 4295.6 50005000 8.59034E-05 7.1586E-06

3 4 SOR 14583 301974751 4.82921E-05 4.0243E-06

4 8 SOR 25997 301974751 8.609E-05 7.1742E-06

5 12 SOR 26037 301974751 8.62224E-05 7.1852E-06

3 4 Sparse 25538 748500000 3.41189E-05 2.8432E-06

4 8 Sparse 59287 748500000 7.92077E-05 6.6006E-06

5 12 Sparse 66613 748500000 8.89953E-05 7.4163E-06

 Average =

7.04906E-

06

145

Bibliography

[CoT98] Collberg, Christian, Clark Thomborson, and Douglas Low, "Manufacturing

Cheap, Resilient, and Stealthy Opaque Constructs," Proceedings of the

Principles of Programming Languages 1998.

[CTL97] Collberg, C., C. Thomborson, and D. Low, "A taxonomy of obfuscating

 transformations," University of Auckland Technical Report, vol. 170, 1997.

[CTL98] Collberg, C., C. Thomborson, and D. Low, "Breaking abstractions and

 unstructuring data structures," Proceedings from International Conference on

 Computer Languages, 1998., pp. 28-38, 1998.

[Dub06] Dube, Thomas, "Metamorphism as a Software Protection for Non-Malicious

 Code," Dissertation/Thesis, 2006.

[Eib06] Joachim, Eibl. KDiff3. Ver. 0.9.91. Computer Software.

 http://kdiff3.sourceforge.net/ 2006. Accessed 14 Feb 2007.

[Eli05] Eliam, Eldad, Reversing: Secrets of Reverse Engineering. Indianapolis,

Indiana: Wiley Publishing, Inc., 2005.

[GaI05] Gatlin, Kang Su and Pete Isensee. "OPENMP AND C++ Reap the Benefits

of Multithreading without All the Work."

http://msdn.microsoft.com/msdnmag/issues/05/10/OpenMP/ 2005.

Accessed 14 Feb 2007.

[Gha04] Ghais. Ggrep. Ver. 1.0. Computer Software. www.planet-source-

code.com/ 2004. Accessed 14 Feb 2007.

[Hex02] Phillips, Andrew W. HexEdit. Ver. 2.00. Computer Software.

 www.expertcomsoft.com/hexedit.htm 2002. Accessed 14 Feb 2007.

[Ida06] Data_Rescue. Ida Pro Disassembler and Debugger. Ver. 4.6.0.809.

Computer Software. http://www.datarescue.com/idabase/ 2006. Accessed

14 Feb 2007.

[LiD03] Linn, C. and S. Debray, "Obfuscation of executable code to improve

resistance to static disassembly," Proceedings of the 10th Association for

Computing Machinery conference on Computer and communication security,

pp. 290-299, 2003.

146

[Low98] Low, Douglas, "Java Control Flow Obfuscation," University of Auckland,

1998.

[MAM05] Madou, M., B. Anckaert, P. Moseley, S. Debray, B. De Sutter, and K. De

 Bosschere, "Software Protection through Dynamic Code Mutation,"

 Proceedings of the 6th International Workshop on Information Security

 Applications, pp. 371–385, 2005.

[MIN05] Minitab. MINITAB 14.0. Ver. 14.20. Computer Software. 2005.

[MVS05] Microsoft. Microsoft Visual Studio Professional 2005. Ver. 8.0.50727.42.

 Computer Software. http://msdn.microsoft.com/vstudio/ Accessed 14 Feb

 2007.

[Oll05] Yuschuk, Oleh. OllyDbg. Ver. 1.10. Computer Software.

 http://www.ollydbg.de/ 2005. Accessed 14 Feb 2007.

[Ope05] OpenMP Application Program Interface. http://www.openmp.org/ Accessed

14 Feb 07.

[OSS03] Ogiso, T., Y. Sakabe, M. Soshi, and A. Miyaji, "Software obfuscation on a

 theoretical basis and its implementation," Institute of Electronics,

Information and Communication Engineers, Transactions on

 Fundamentals, pp. 176–186, 2003.

[PoM04] Pozo, R and B Miller. "About SciMark 2.0"

 http://math.nist.gov/scimark2/about.html. Accessed 14 Feb 2007.

[Sci2.0] Pozo, R and B Miller. SciMark 2.0. Ver. 2.0. Computer Software.

 http://math.nist.gov/scimark2/download_c.html 2004. Accessed 14 Feb

2007.

[Web96] Webster's II New Riverside Dictionary Revised Edition. Boston, MA:

Houghton Mifflin Company, 1996.

[WDH03] Wang, C., J. Davidson, J. Hill, and J. Knight, "Protection of software-based

 survivability mechanisms," International Conference of Dependable Systems

 and Networks, pp. 193-202, 2003.

[WHK00] Wang, C., J. Hill, J. Knight, and J. Davidson, "Software tamper resistance:

 Obstructing static analysis of programs," University of Virginia,

 Charlottesville, VA, 2000.

[Wol96] Wolfe, Michael, "High Performance Compilers for Parallel Computing,"

147

 Anonymous, Ed. Redwood City, CA: Addison-Wesley Publishing Company,

 1996, pp. 22-23, 137-139.

[ZhG03] Zhang, X. and R. Gupta, "Hiding program slices for software security,"

 International Symposium on Code Generation and Optimization, pp. 325-

336, 2003.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of

information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an

penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

22-03-2007

2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

Aug 2005 – Mar 2007

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Software Protection Against Reverse Engineering Tools

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Benson, Joshua, A., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Way

 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION

 REPORT NUMBER

 AFIT/GIA/ENG/07-01

10. SPONSOR/MONITOR’S

ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 AT-SPI Technology Office

 AFRL/SNTA (POC: Robert Bennington)
 2241 Avionics Circle

 WPAFB, OH 45433-7320 (937) 320-9068
11. SPONSOR/MONITOR’S

REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 Advances in technology have led to the use of simple to use automated debugging tools which can be extremely helpful in troubleshooting
problems in code. However, a malicious attacker can use these same tools. Securely designing software and keeping it secure has become extremely difficult.

These same easy to use debuggers can be used to bypass security built into software. While the detection of an altered executable file is possible, it is not as

easy to prevent alteration in the first place. One way to prevent alteration is through code obfuscation or hiding the true function of software so as to make

alteration difficult. This research executes blocks of code in parallel from within a hidden function to obscure functionality.

 This method is tested on six programs; a DOS version of the UNIX grep utility and five computational functions: Fast Fourier Transfer,

Successive Over-Relaxation, Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization. It tests the impact of using four, eight, and twelve

parallel threads of execution to obscure functionality.

 The concept is effective, but is limited due to the cost associated with using threads. The computational functions make millions of calls to the

hidden function. The average cost per thread for these five functions turns out to be 7.04906 x 10-6 seconds. The grep function does not make millions of calls

and is therefore more feasible. Care must be taken to ensure the compiler does not remove parallel threads if optimization is used.

15. SUBJECT TERMS

Obfuscation, Software Protection, Parallel Threads, OpenMP, Reverse Engineering

16. SECURITY CLASSIFICATION

OF:

19a. NAME OF RESPONSIBLE PERSON

Rusty O. Baldwin, Civ, USAF

REPORT

U

ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF

 ABSTRACT

UU

18. NUMBER

 OF

 PAGES

170
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4445; e-mail: Rusty.Baldwin@afit.edu

